Evolutionary robotics (ER) is a powerful approach for the automatic synthesis of robot controllers, as it requires little a priori knowledge about the problem to be solved in order to obtain good solutions. This is particularly true for collective and swarm robotics, in which the desired behavior of the group is an indirect result of the control and communication rules followed by each individual. However, the experimenter must make several arbitrary choices in setting up the evolutionary process, in order to define the correct selective pressures that can lead to the desired results. In some cases, only a deep understanding of the obtained results can point to the critical aspects that constrain the system, which can be later modified in order to re-engineer the evolutionary process towards better solutions. In this article, we discuss the problem of engineering the evolutionary machinery that can lead to the desired result in the swarm robotics context. We also present a case study about self-organizing synchronization in a swarm of robots, in which some arbitrarily chosen properties of the communication system hinder the scalability of the behavior to large groups. We show that by modifying the communication system, artificial evolution can synthesize behaviors that scale properly with the group size.

This content is only available as a PDF.
You do not currently have access to this content.