Abstract
Life and other dissipative structures involve nonlinear dynamics that are not amenable to conventional analysis. Advances are being made in theory, modeling, and simulation techniques, but we do not have general principles for designing, controlling, stabilizing, or eliminating these systems. There is thus a need for tools that can transform high-level descriptions of these systems into useful guidance for their modification and design. In this article we introduce new methods for quantifying the viability of dissipative structures. We then present an information-theoretical approach for evaluating the quality of viability indicators, measurable quantities that covary with, and thus can be used to predict or influence, a system's viability.