Behavioral diversity seen in biological systems is, at the most basic level, driven by interactions between physical materials and their environment. In this context we are interested in falling paper systems, specifically the V-shaped falling paper (VSFP) system that exhibits a set of discrete falling behaviors across the morphological parameter space. Our previous work has investigated how morphology influences dominant falling behaviors in the VSFP system. In this article we build on this analysis to investigate the nature of behavioral transitions in the same system. First, we investigate stochastic behavior transitions. We demonstrate how morphology influences the likelihood of different transitions, with certain morphologies leading to a wide range of possible paths through the behavior-space. Second, we investigate deterministic transitions. To investigate behaviors over longer time periods than available in falling experiments we introduce a new experimental platform. We demonstrate how we can induce behavior transitions by modulating the energy input to the system. Certain behavior transitions are found to be irreversible, exhibiting a form of hysteresis, while others are fully reversible. Certain morphologies are shown to behave like simplistic sequential logic circuits, indicating that the system has a form of memory encoded into the morphology–environment interactions. Investigating the limits of how morphology–environment interactions induce non-trivial behaviors is a key step for the design of embodied artificial life-forms.
Skip Nav Destination
Article navigation
Summer-Fall 2021
March 16 2022
Morphological Sensitivity and Falling Behavior of Paper V-Shapes
In Special Collection:
CogNet
Josie Hughes,
Josie Hughes
École Polytechnique Fédérale de Lausanne
Search for other works by this author on:
Fumiya Iida
University of Cambridge, UK. [email protected]
*Corresponding author.
Search for other works by this author on:
Toby Howison
University of Cambridge, UK
Josie Hughes
École Polytechnique Fédérale de Lausanne
University of Cambridge, UK. [email protected]
*Corresponding author.
Online ISSN: 1530-9185
Print ISSN: 1064-5462
© 2021 Massachusetts Institute of Technology
2021
Massachusetts Institute of Technology
Artificial Life (2021) 27 (3–4): 204–219.
Citation
Toby Howison, Josie Hughes, Fumiya Iida; Morphological Sensitivity and Falling Behavior of Paper V-Shapes. Artif Life 2021; 27 (3–4): 204–219. doi: https://doi.org/10.1162/artl_a_00340
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your Institution
214
Views
Advertisement
Cited By