It is already well known that environmental variation has a big effect on real evolution, and similar effects have been found in evolutionary artificial life simulations. In particular, a lot of research has been carried out on how the various evolutionary outcomes depend on the noise distributions representing the environmental changes, and how important it is for models to use inverse power-law distributions with the right noise colour. However, there are two distinct factors of relevance—the average total magnitude of change per unit time and the distribution of individual change magnitudes—and misleading results may emerge if those factors are not properly separated. This article makes use of an existing agent-based artificial life modeling framework to explore this issue using models previously tried and tested for other purposes. It begins by demonstrating how the total magnitude and distribution effects can easily be confused, and goes on to show how it is possible to untangle the influence of these interacting factors by using correlation-based normalization. It then presents a series of simulation results demonstrating that interesting dependencies on the noise distribution remain after separating those factors, but many effects involving the noise colour of inverse power-law distributions disappear, and very similar results arise across restricted-range white-noise distributions. The average total magnitude of change per unit time is found to have a substantial effect on the simulation outcomes, but the distribution of individual changes has very little effect. A robust counterexample is thereby provided to the idea that it is always important to use accurate environmental change distributions in artificial life models.

You do not currently have access to this content.