Abstract
Central to the Artificial Life endeavor is the creation of artificial systems that spontaneously generate properties found in the living world, such as autopoiesis, self-replication, evolution, and open-endedness. Though numerous models and paradigms have been proposed, cellular automata (CA) have taken a very important place in the field, notably because they enable the study of phenomena like self-reproduction and autopoiesis. Continuous CA like Lenia have been shown to produce lifelike patterns reminiscent, from both aesthetic and ontological points of view, of biological organisms we call “creatures.” We propose Flow-Lenia, a mass conservative extension of Lenia. We present experiments demonstrating its effectiveness in generating spatially localized patterns with complex behaviors and show that the update rule parameters can be optimized to generate complex creatures showing behaviors of interest. Furthermore, we show that Flow-Lenia allows us to embed the parameters of the model, defining the properties of the emerging patterns, within its own dynamics, thus allowing for multispecies simulation. Using the evolutionary activity framework and other metrics, we shed light on the emergent evolutionary dynamics taking place in this system.