Abstract
In this article versions of the abstract NKC model are used to examine the conditions under which two significant evolutionary phenomena—multicellularity and eusociality—are likely to occur and why. First, comparisons in evolutionary performance are made between simulations of unicellular organisms and very simple multicellular-like organisms, under varying conditions. The results show that such multicellularity without differentiation appears selectively neutral, but that differentiation to soma (nonreproductives) proves beneficial as the amount of epistasis in the fitness landscape increases. This is explained by considering mutations in the generation of daughter cells and their subsequent effect on the propagule's fitness. This is interpreted as a simple example of the Baldwin effect. Second, the correspondences between multicellularity and eusociality are highlighted, particularly that both contain individuals who do not reproduce. The same process is then used to explain the emergence of eusocial colonies.