In many social, cyber-physical, and socio-technical systems, a group of autonomous peers can encounter a knowledge aggregation problem, requiring them to organise themselves, without a centralised authority, as a distributed information processing unit (DIP). In this article, we specify and implement a new algorithm for knowledge aggregation based on Nowak’s psychological theory Regulatory Theory of Social Influence (RTSI). This theory posits that social influence consists of not only sources trying to influence targets, but also targets seeking sources by whom to be influenced and learning what processing rules those sources are using. A multi-agent simulator SMARTSIS is implemented to evaluate the algorithm, using as its base scenario a linear public goods game where the DIP’s decision is a qualitative question of distributive justice. In a series of experiments examining the emergence of expertise, we show how RTSI enhances the effectiveness of the multi-agent DIP as a social group while conserving each agent’s individual resources. Additionally, we identify eight criteria for evaluating the DIP unit’s performance, consisting of four conflicting pairs of systemic drivers, and discuss how RTSI maintains a balanced tension between the four driver pairs through the emergence and divergence of expertise. We conclude by arguing that this shows how psychological theories like RTSI can have a crucial role in informing agent-based models of human behaviour, which in turn may be critically important for effective knowledge management and reflective self-improvement in both cyber-physical and socio-technical systems.

This content is only available as a PDF.
You do not currently have access to this content.