We study the emergence and dynamics of competing strains of digital organisms in a world with two depletable resources. Consumption of one resource produces the other resource as a by-product, and vice versa. As a consequence, two types of mutually dependent organisms emerge that each prey on the waste product of the other. In the absence of mutations, that is, in a purely ecological setting, the abundances of the two types of organisms display a wide range of different types of oscillations, from regular oscillations with large amplitude to irregular oscillations with amplitudes ranging from small to large. In this regime, time-averaged abundance levels seem to be controlled by the relative fitness of the organisms in the absence of resources. Under mutational pressure, on the other hand, populations evolve that seem to avoid the oscillations of intermediate to large amplitudes. In this case, the relative fitness of the organisms in the presence of resources plays an important role in the time-averaged abundance levels as well.

This content is only available as a PDF.

Author notes

Present address: Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131.