Abstract

We introduce a method for visualizing evolutionary activity of genotypes. Following a proposal of Bedau and Packard [11], we define a genotype's evolutionary activity in terms of the history of its concentration in the evolving population. To visualize this evolutionary activity we graph the distribution of evolutionary activity in the population of genotypes as a function of time. Adaptively significant genotypes trace a salient line or “wave” in these graphs. The quality of these waves indicates a variety of evolutionary phenomena, such as competitive exclusion, neutral variation, and random genetic drift. We apply this method in an evolutionary model of self-replicating assembly language programs competing for room in a two-dimensional space. Comparison with fitness graphs and with a nonadaptive analogue of this model shows how this method highlights adaptively significant events.

This content is only available as a PDF.

Author notes

Present address: MC 106-38, Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125; ctb@cns.caltech.edu