Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Adam Nellis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2016) 22 (1): 49–75.
Published: 01 February 2016
FIGURES
| View All (9)
Abstract
View article
PDF
Automata chemistries are good vehicles for experimentation in open-ended evolution, but they are by necessity complex systems whose low-level properties require careful design. To aid the process of designing automata chemistries, we develop an abstract model that classifies the features of a chemistry from a physical (bottom up) perspective and from a biological (top down) perspective. There are two levels: things that can evolve, and things that cannot. We equate the evolving level with biology and the non-evolving level with physics. We design our initial organisms in the biology, so they can evolve. We design the physics to facilitate evolvable biologies. This architecture leads to a set of design principles that should be observed when creating an instantiation of the architecture. These principles are Everything Evolves, Everything's Soft , and Everything Dies . To evaluate these ideas, we present experiments in the recently developed Stringmol automata chemistry. We examine the properties of Stringmol with respect to the principles, and so demonstrate the usefulness of the principles in designing automata chemistries.