Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Adam Stanton
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2022) 28 (4): 479–498.
Published: 01 November 2022
FIGURES
| View All (19)
Abstract
View articletitled, Lexicase Selection for Multi-Task Evolutionary Robotics
View
PDF
for article titled, Lexicase Selection for Multi-Task Evolutionary Robotics
In Evolutionary Robotics, Lexicase selection has proven effective when a single task is broken down into many individual parameterizations. Evolved individuals have generalized across unique configurations of an overarching task. Here, we investigate the ability of Lexicase selection to generalize across multiple tasks, with each task again broken down into many instances. There are three objectives: to determine the feasibility of introducing additional tasks to the existing platform; to investigate any consequential effects of introducing these additional tasks during evolutionary adaptation; and to explore whether the schedule of presentation of the additional tasks over evolutionary time affects the final outcome. To address these aims we use a quadruped animat controlled by a feed-forward neural network with joint-angle, bearing-to-target, and spontaneous sinusoidal inputs. Weights in this network are trained using evolution with Lexicase-based parent selection. Simultaneous adaptation in a wall crossing task (labelled wall-cross ) is explored when one of two different alternative tasks is also present: turn-and-seek or cargo-carry . Each task is parameterized into 100 distinct variants, and these variants are used as environments for evaluation and selection with Lexicase. We use performance in a single-task wall-cross environment as a baseline against which to examine the multi-task configurations. In addition, the objective sampling strategy (the manner in which tasks are presented over evolutionary time) is varied, and so data for treatments implementing uniform sampling, even sampling, or degrees of generational sampling are also presented. The Lexicase mechanism successfully integrates evolution of both turn-and-seek and cargo-carry with wall-cross , though there is a performance penalty compared to single task evolution. The size of the penalty depends on the similarity of the tasks. Complementary tasks ( wallcross / turn-and-seek ) show better performance than antagonistic tasks ( wall-cross / cargo-carry ). In complementary tasks performance is not affected by the sampling strategy. Where tasks are antagonistic, uniform and even sampling strategies yield significantly better performance than generational sampling. In all cases the generational sampling requires more evaluations and consequently more computational resources. The results indicate that Lexicase is a viable mechanism for multitask evolution of animat neurocontrollers, though the degree of interference between tasks is a key consideration. The results also support the conclusion that the naive, uniform random sampling strategy is the best choice when considering final task performance, simplicity of implementation, and computational efficiency.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2016) 22 (3): 408–423.
Published: 01 August 2016
Abstract
View articletitled, Open-Ended Evolution: Perspectives from the OEE Workshop in York
View
PDF
for article titled, Open-Ended Evolution: Perspectives from the OEE Workshop in York
We describe the content and outcomes of the First Workshop on Open-Ended Evolution: Recent Progress and Future Milestones (OEE1), held during the ECAL 2015 conference at the University of York, UK, in July 2015. We briefly summarize the content of the workshop's talks, and identify the main themes that emerged from the open discussions. Two important conclusions from the discussions are: (1) the idea of pluralism about OEE—it seems clear that there is more than one interesting and important kind of OEE; and (2) the importance of distinguishing observable behavioral hallmarks of systems undergoing OEE from hypothesized underlying mechanisms that explain why a system exhibits those hallmarks. We summarize the different hallmarks and mechanisms discussed during the workshop, and list the specific systems that were highlighted with respect to particular hallmarks and mechanisms. We conclude by identifying some of the most important open research questions about OEE that are apparent in light of the discussions. The York workshop provides a foundation for a follow-up OEE2 workshop taking place at the ALIFE XV conference in Cancún, Mexico, in July 2016. Additional materials from the York workshop, including talk abstracts, presentation slides, and videos of each talk, are available at http://alife.org/ws/oee1 .