Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
André Stauffer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2004) 10 (4): 463–477.
Published: 01 October 2004
Abstract
View article
PDF
In a traditional cellular automaton (CA) a cell is implemented by a rule table defining its state at the next time step, given its present state and those of its neighbors. The cell thus deals only with states. We present a novel CA where the cell handles data and signals. The cell is designed as a digital system comprising a processing unit and a control unit. This allows the realization of various growing structures, including self-replicating loops and biomorphs. We also describe the hardware implementation of these structures within our electronic wall for bio-inspired applications, the BioWall.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2002) 8 (2): 175–183.
Published: 01 April 2002
Abstract
View article
PDF
Self-replicating loops presented to date are essentially worlds unto themselves, inaccessible to the observer once the replication process is launched. In this article we present the design of an interactive self-replicating loop of arbitrary size, wherein the user can physically control the loop's replication and induce its destruction. After introducing the BioWall, a reconfigurable electronic wall for bio-inspired applications, we describe the design of our novel loop and delineate its hardware implementation in the wall.
Journal Articles
Publisher: Journals Gateway
Artificial Life (1998) 4 (3): 259–282.
Published: 01 July 1998
Abstract
View article
PDF
Biological organisms are among the most intricate structures known to man, exhibiting highly complex behavior through the massively parallel cooperation of numerous relatively simple elements, the cells. As the development of computing systems approaches levels of complexity such that their synthesis begins to push the limits of human intelligence, engineers are starting to seek inspiration in nature for the design of computing systems, both at the software and at the hardware levels. We present one such endeavor, notably an attempt to draw inspiration from biology in the design of a novel digital circuit: a field-programmable gate array (FPGA). This reconfigurable logic circuit will be endowed with two features motivated and guided by the behavior of biological systems: self-replication and self-repair .