Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-11 of 11
Charles Ofria
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2022) 28 (4): 423–439.
Published: 01 November 2022
FIGURES
| View All (4)
Abstract
View article
PDF
Understanding the structure and evolution of natural cognition is a topic of broad scientific interest, as is the development of an engineering toolkit to construct artificial cognitive systems. One open question is determining which components and techniques to use in such a toolkit. To investigate this question, we employ agent-based AI, using simple computational substrates (i.e., digital brains) undergoing rapid evolution. Such systems are an ideal choice as they are fast to process, easy to manipulate, and transparent for analysis. Even in this limited domain, however, hundreds of different computational substrates are used. While benchmarks exist to compare the quality of different substrates, little work has been done to build broader theory on how substrate features interact. We propose a technique called the Comparative Hybrid Approach and develop a proof-of-concept by systematically analyzing components from three evolvable substrates: recurrent artificial neural networks, Markov brains, and Cartesian genetic programming. We study the role and interaction of individual elements of these substrates by recombining them in a piecewise manner to form new hybrid substrates that can be empirically tested. Here, we focus on network sparsity, memory discretization, and logic operators of each substrate. We test the original substrates and the hybrids across a suite of distinct environments with different logic and memory requirements. While we observe many trends, we see that discreteness of memory and the Markov brain logic gates correlate with high performance across our test conditions. Our results demonstrate that the Comparative Hybrid Approach can identify structural subcomponents that predict task performance across multiple computational substrates.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2020) 26 (2): 274–306.
Published: 01 May 2020
FIGURES
| View All (15)
Abstract
View article
PDF
Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an algorithmic process that transcends the substrate in which it occurs. Indeed, many researchers in the field of digital evolution can provide examples of how their evolving algorithms and organisms have creatively subverted their expectations or intentions, exposed unrecognized bugs in their code, produced unexpectedly adaptations, or engaged in behaviors and outcomes, uncannily convergent with ones found in nature. Such stories routinely reveal surprise and creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. Bugs are fixed, experiments are refocused, and one-off surprises are collapsed into a single data point. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This article is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2020) 26 (1): 58–79.
Published: 01 April 2020
FIGURES
| View All (15)
Abstract
View article
PDF
Fine-scale evolutionary dynamics can be challenging to tease out when focused on the broad brush strokes of whole populations over long time spans. We propose a suite of diagnostic analysis techniques that operate on lineages and phylogenies in digital evolution experiments, with the aim of improving our capacity to quantitatively explore the nuances of evolutionary histories in digital evolution experiments. We present three types of lineage measurements: lineage length, mutation accumulation, and phenotypic volatility. Additionally, we suggest the adoption of four phylogeny measurements from biology: phylogenetic richness, phylogenetic divergence, phylogenetic regularity, and depth of the most-recent common ancestor. In addition to quantitative metrics, we also discuss several existing data visualizations that are useful for understanding lineages and phylogenies: state sequence visualizations, fitness landscape overlays, phylogenetic trees, and Muller plots. We examine the behavior of these metrics (with the aid of data visualizations) in two well-studied computational contexts: (1) a set of two-dimensional, real-valued optimization problems under a range of mutation rates and selection strengths, and (2) a set of qualitatively different environments in the Avida digital evolution platform. These results confirm our intuition about how these metrics respond to various evolutionary conditions and indicate their broad value.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2019) 25 (2): 117–133.
Published: 01 May 2019
FIGURES
| View All (7)
Abstract
View article
PDF
The emergence of new replicating entities from the union of simpler entities characterizes some of the most profound events in natural evolutionary history. Such transitions in individuality are essential to the evolution of the most complex forms of life. Thus, understanding these transitions is critical to building artificial systems capable of open-ended evolution. Alas, these transitions are challenging to induce or detect, even with computational organisms. Here, we introduce the DISHTINY (Distributed Hierarchical Transitions in Individuality) platform, which provides simple cell-like organisms with the ability and incentive to unite into new individuals in a manner that can continue to scale to subsequent transitions. The system is designed to encourage these transitions so that they can be studied: Organisms that coordinate spatiotemporally can maximize the rate of resource harvest, which is closely linked to their reproductive ability. We demonstrate the hierarchical emergence of multiple levels of individuality among simple cell-like organisms that evolve parameters for manually designed strategies. During evolution, we observe reproductive division of labor and close cooperation among cells, including resource-sharing, aggregation of resource endowments for propagules, and emergence of an apoptosis response to somatic mutation. Many replicate populations evolved to direct their resources toward low-level groups (behaving like multicellular individuals), and many others evolved to direct their resources toward high-level groups (acting as larger-scale multicellular individuals).
Journal Articles
Publisher: Journals Gateway
Artificial Life (2019) 25 (1): 50–73.
Published: 01 April 2019
FIGURES
| View All (11)
Abstract
View article
PDF
Building more open-ended evolutionary systems can simultaneously advance our understanding of biology, artificial life, and evolutionary computation. In order to do so, however, we need a way to determine when we are moving closer to this goal. We propose a set of metrics that allow us to measure a system's ability to produce commonly-agreed-upon hallmarks of open-ended evolution: change potential, novelty potential, complexity potential, and ecological potential. Our goal is to make these metrics easy to incorporate into a system, and comparable across systems so that we can make coherent progress as a field. To this end, we provide detailed algorithms (including C++ implementations) for these metrics that should be easy to incorporate into existing artificial life systems. Furthermore, we expect this toolbox to continue to grow as researchers implement these metrics in new languages and as the community reaches consensus about additional hallmarks of open-ended evolution. For example, we would welcome a measurement of a system's potential to produce major transitions in individuality. To confirm that our metrics accurately measure the hallmarks we are interested in, we test them on two very different experimental systems: NK landscapes and the Avida digital evolution platform. We find that our observed results are consistent with our prior knowledge about these systems, suggesting that our proposed metrics are effective and should generalize to other systems.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2018) 24 (4): 229–249.
Published: 01 March 2019
FIGURES
| View All (21)
Abstract
View article
PDF
Mutualisms occur when at least two species provide a net fitness benefit to each other. These types of interactions are ubiquitous in nature, with more being discovered regularly. Mutualisms are vital to humankind: Pollinators and soil microbes are critical in agriculture, bacterial microbiomes regulate our health, and domesticated animals provide us with food and companionship. Many hypotheses exist on how mutualisms evolve; however, they are difficult to evaluate without bias, due to the fragile and idiosyncratic systems most often investigated. Instead, we have created an artificial life simulation, Symbulation , which we use to examine mutualism evolution based on (1) the probability of vertical transmission (symbiont being passed to offspring) and (2) the spatial structure of the environment. We found that spatial structure can lead to less mutualism at intermediate vertical transmission rates. We provide evidence that this effect is due to the ability of quasi species to purge parasites, reducing the diversity of available symbionts. Our simulation is easily extended to test many additional hypotheses about the evolution of mutualism and serves as a general model to quantitatively compare how different environments affect the evolution of mutualism.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2016) 22 (3): 408–423.
Published: 01 August 2016
Abstract
View article
PDF
We describe the content and outcomes of the First Workshop on Open-Ended Evolution: Recent Progress and Future Milestones (OEE1), held during the ECAL 2015 conference at the University of York, UK, in July 2015. We briefly summarize the content of the workshop's talks, and identify the main themes that emerged from the open discussions. Two important conclusions from the discussions are: (1) the idea of pluralism about OEE—it seems clear that there is more than one interesting and important kind of OEE; and (2) the importance of distinguishing observable behavioral hallmarks of systems undergoing OEE from hypothesized underlying mechanisms that explain why a system exhibits those hallmarks. We summarize the different hallmarks and mechanisms discussed during the workshop, and list the specific systems that were highlighted with respect to particular hallmarks and mechanisms. We conclude by identifying some of the most important open research questions about OEE that are apparent in light of the discussions. The York workshop provides a foundation for a follow-up OEE2 workshop taking place at the ALIFE XV conference in Cancún, Mexico, in July 2016. Additional materials from the York workshop, including talk abstracts, presentation slides, and videos of each talk, are available at http://alife.org/ws/oee1 .
Journal Articles
Publisher: Journals Gateway
Artificial Life (2016) 22 (3): 364–407.
Published: 01 August 2016
FIGURES
| View All (14)
Abstract
View article
PDF
We present a survey of the first 21 years of web-based artificial life (WebAL) research and applications, broadly construed to include the many different ways in which artificial life and web technologies might intersect. Our survey covers the period from 1994—when the first WebAL work appeared—up to the present day, together with a brief discussion of relevant precursors. We examine recent projects, from 2010–2015, in greater detail in order to highlight the current state of the art. We follow the survey with a discussion of common themes and methodologies that can be observed in recent work and identify a number of likely directions for future work in this exciting area.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2008) 14 (3): 255–263.
Published: 01 July 2008
Abstract
View article
PDF
Evolutionary theory explains the origin of complex organismal features through a combination of reusing and extending information from less-complex traits, and by needing to exploit only one of many unlikely pathways to a viable solution. While the appearance of a new trait may seem sudden, we show that the underlying information associated with each trait evolves gradually. We study this process using digital organisms, self-replicating computer programs that mutate and evolve novel traits, including complex logic operations. When a new complex trait first appears, its proper function immediately requires the coordinated operation of many genomic positions. As the information associated with a trait increases, the probability of its simultaneous introduction drops exponentially, so it is nearly impossible for a significantly complex trait to appear without reusing existing information. We show that the total information stored in the genome increases only marginally when a trait first appears. Furthermore, most of the information associated with a new trait is either correlated with existing traits or co-opted from traits that were lost in conjunction with the appearance of the new trait. Thus, while total genomic information increases incrementally, traits that require much more information can still arise during the evolutionary process.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2004) 10 (2): 157–166.
Published: 01 April 2004
Abstract
View article
PDF
Phylogenetic trees group organisms by their ancestral relationships. There are a number of distinct algorithms used to reconstruct these trees from molecular sequence data, but different methods sometimes give conflicting results. Since there are few precisely known phylogenies, simulations are typically used to test the quality of reconstruction algorithms. These simulations randomly evolve strings of symbols to produce a tree, and then the algorithms are run with the tree leaves as inputs. Here we use Avida to test two widely used reconstruction methods, which gives us the chance to observe the effect of natural selection on tree reconstruction. We find that if the organisms undergo natural selection between branch points, the methods will be successful even on very large time scales. However, these algorithms often falter when selection is absent.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2004) 10 (2): 191–229.
Published: 01 April 2004
Abstract
View article
PDF
Avida is a software platform for experiments with self-replicating and evolving computer programs. It provides detailed control over experimental settings and protocols, a large array of measurement tools, and sophisticated methods to analyze and post-process experimental data. We explain the general principles on which Avida is built, as well as its main components and their interactions. We also explain how experiments are set up, carried out, and analyzed.