Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Christos Ampatzis
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2009) 15 (4): 465–484.
Published: 01 October 2009
Abstract
View article
PDF
This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot . The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2008) 14 (2): 157–178.
Published: 01 April 2008
Abstract
View article
PDF
This article describes a simulation model in which artificial evolution is used to design homogeneous control structures and adaptive communication protocols for a group of three autonomous simulated robots. The agents are required to cooperate in order to approach a light source while avoiding collisions. The robots are morphologically different: Two of them are equipped with infrared sensors, one with light sensors. Thus, the two morphologically identical robots should take care of obstacle avoidance; the other one should take care of phototaxis. Since all of the agents can emit and perceive sound, the group's coordination of actions is based on acoustic communication. The results of this study are a proof of concept: They show that dynamic artificial neural networks can be successfully synthesized by artificial evolution to design the neural mechanisms required to underpin the behavioral strategies and adaptive communication capabilities demanded by this task. Postevaluation analyses unveil operational aspects of the best evolved behavior. Our results suggest that the building blocks and the evolutionary machinery detailed in the article should be considered in future research work dealing with the design of homogeneous controllers for groups of heterogeneous cooperating and communicating robots.