Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Dario Floreano
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2005) 11 (1-2): 121–138.
Published: 01 January 2005
Abstract
View article
PDF
We give an overview of the EPFL indoor flying project, whose goal is to evolve neural controllers for autonomous, adaptive, indoor micro-flyers. Indoor flight is still a challenge because it requires miniaturization, energy efficiency, and control of nonlinear flight dynamics. This ongoing project consists of developing a flying, vision-based micro-robot, a bio-inspired controller composed of adaptive spiking neurons directly mapped into digital microcontrollers, and a method to evolve such a neural controller without human intervention. This article describes the motivation and methodology used to reach our goal as well as the results of a number of preliminary experiments on vision-based wheeled and flying robots.
Journal Articles
Publisher: Journals Gateway
Artificial Life (1998) 4 (4): 311–335.
Published: 01 October 1998
Abstract
View article
PDF
Coevolution (i.e., the evolution of two or more competing populations with coupled fitness) has several features that may potentially enhance the power of adaptation of artificial evolution. In particular, as discussed by Dawkins and Krebs [3], competing populations may reciprocally drive one another to increasing levels of complexity by producing an evolutionary “arms race.” In this article we will investigate the role of coevolution in the context of evolutionary robotics. In particular, we will try to understand in what conditions coevolution can lead to “arms races.” Moreover, we will show that in some cases artificial coevolution has a higher adaptive power than simple evolution. Finally, by analyzing the dynamics of coevolved populations, we will show that in some circumstances well-adapted individuals would be better advised to adopt simple but easily modifiable strategies suited for the current competitor strategies rather than incorporate complex and general strategies that may be effective against a wide range of opposing counter-strategies.