Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Federico Pigozzi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2024) 30 (2): 240–258.
Published: 01 May 2024
FIGURES
| View All (12)
Abstract
View article
PDF
Biological agents have bodies that are composed mostly of soft tissue. Researchers have resorted to soft bodies to investigate Artificial Life (ALife)-related questions; similarly, a new era of soft-bodied robots has just begun. Nevertheless, because of their infinite degrees of freedom, soft bodies pose unique challenges in terms of simulation, control, and optimization. Herein I propose a novel soft-bodied agents formalism, namely, pressure-based soft agents (PSAs): spring-mass membranes containing a pressurized medium. Pressure endows the agents with structure, while springs and masses simulate softness and allow the agents to assume a large gamut of shapes. PSAs actuate both locally, by changing the resting lengths of springs, and globally, by modulating global pressure. I optimize the controller of PSAs for a locomotion task on hilly terrain, an escape task from a cage, and an object manipulation task. The results suggest that PSAs are indeed effective at the tasks, especially those requiring a shape change. I envision PSAs as playing a role in modeling soft-bodied agents, such as soft robots and biological cells.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2022) 28 (3): 322–347.
Published: 04 August 2022
FIGURES
| View All (12)
Abstract
View article
PDF
Modularity is a desirable property for embodied agents, as it could foster their suitability to different domains by disassembling them into transferable modules that can be reassembled differently. We focus on a class of embodied agents known as voxel-based soft robots (VSRs). They are aggregations of elastic blocks of soft material; as such, their morphologies are intrinsically modular. Nevertheless, controllers used until now for VSRs act as abstract, disembodied processing units: Disassembling such controllers for the purpose of module transferability is a challenging problem. Thus, the full potential of modularity for VSRs still remains untapped. In this work, we propose a novel self-organizing, embodied neural controller for VSRs. We optimize it for a given task and morphology by means of evolutionary computation: While evolving, the controller spreads across the VSR morphology in a way that permits emergence of modularity. We experimentally investigate whether such a controller (i) is effective and (ii) allows tuning of its degree of modularity, and with what kind of impact. To this end, we consider the task of locomotion on rugged terrains and evolve controllers for two morphologies. Our experiments confirm that our self-organizing, embodied controller is indeed effective. Moreover, by mimicking the structural modularity observed in biological neural networks, different levels of modularity can be achieved. Our findings suggest that the self-organization of modularity could be the basis for an automatic pipeline for assembling, disassembling, and reassembling embodied agents.