Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Guillaume Beslon
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2022) 28 (4): 440–457.
Published: 01 November 2022
FIGURES
| View All (13)
Abstract
View article
PDF
DNA supercoiling, the level of under- or overwinding of the DNA polymer around itself, is widely recognized as an ancestral regulation mechanism of gene expression in bacteria. Higher levels of negative supercoiling facilitate the opening of the DNA double helix at gene promoters and thereby increase gene transcription rates. Different levels of supercoiling have been measured in bacteria exposed to different environments, leading to the hypothesis that variations in supercoiling could be a response to changes in the environment. Moreover, DNA transcription has been shown to generate local variations in the supercoiling level and, therefore, to impact the transcription rate of neighboring genes. In this work, we study the coupled dynamics of DNA supercoiling and transcription at the genome scale. We implement a genome-wide model of gene expression based on the transcription-supercoiling coupling. We show that, in this model, a simple change in global DNA supercoiling is sufficient to trigger differentiated responses in gene expression levels via the transcription-supercoiling coupling. Then, studying our model in the light of evolution, we demonstrate that this non-linear response to different environments, mediated by the transcription-supercoiling coupling, can serve as the basis for the evolution of specialized phenotypes.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2020) 26 (2): 274–306.
Published: 01 May 2020
FIGURES
| View All (15)
Abstract
View article
PDF
Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an algorithmic process that transcends the substrate in which it occurs. Indeed, many researchers in the field of digital evolution can provide examples of how their evolving algorithms and organisms have creatively subverted their expectations or intentions, exposed unrecognized bugs in their code, produced unexpectedly adaptations, or engaged in behaviors and outcomes, uncannily convergent with ones found in nature. Such stories routinely reveal surprise and creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. Bugs are fixed, experiments are refocused, and one-off surprises are collapsed into a single data point. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This article is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2020) 26 (1): 38–57.
Published: 01 April 2020
FIGURES
| View All (13)
Abstract
View article
PDF
Using the in silico experimental evolution platform Aevol, we have tested the existence of a complexity ratchet by evolving populations of digital organisms under environmental conditions in which simple organisms can very well thrive and reproduce. We observed that in most simulations, organisms become complex although such organisms are a lot less fit than simple ones and have no robustness or evolvability advantage. This excludes selection from the set of possible explanations for the evolution of complexity. However, complementary experiments showed that selection is nevertheless necessary for complexity to evolve, also excluding non-selective effects. Analyzing the long-term fate of complex organisms, we showed that complex organisms almost never switch back to simplicity despite the potential fitness benefit. On the contrary, they consistently accumulate complexity in the long term, meanwhile slowly increasing their fitness but never overtaking that of simple organisms. This suggests the existence of a complexity ratchet powered by negative epistasis: Mutations leading to simple solutions, which are favorable at the beginning of the simulation, become deleterious after other mutations—leading to complex solutions—have been fixed. This also suggests that this complexity ratchet cannot be beaten by selection, but that it can be overthrown by robustness because of the constraints it imposes on the coding capacity of the genome.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2019) 25 (4): 313–314.
Published: 01 November 2019
Journal Articles
Publisher: Journals Gateway
Artificial Life (2016) 22 (3): 408–423.
Published: 01 August 2016
Abstract
View article
PDF
We describe the content and outcomes of the First Workshop on Open-Ended Evolution: Recent Progress and Future Milestones (OEE1), held during the ECAL 2015 conference at the University of York, UK, in July 2015. We briefly summarize the content of the workshop's talks, and identify the main themes that emerged from the open discussions. Two important conclusions from the discussions are: (1) the idea of pluralism about OEE—it seems clear that there is more than one interesting and important kind of OEE; and (2) the importance of distinguishing observable behavioral hallmarks of systems undergoing OEE from hypothesized underlying mechanisms that explain why a system exhibits those hallmarks. We summarize the different hallmarks and mechanisms discussed during the workshop, and list the specific systems that were highlighted with respect to particular hallmarks and mechanisms. We conclude by identifying some of the most important open research questions about OEE that are apparent in light of the discussions. The York workshop provides a foundation for a follow-up OEE2 workshop taking place at the ALIFE XV conference in Cancún, Mexico, in July 2016. Additional materials from the York workshop, including talk abstracts, presentation slides, and videos of each talk, are available at http://alife.org/ws/oee1 .
Journal Articles
Publisher: Journals Gateway
Artificial Life (2008) 14 (1): 149–156.
Published: 01 January 2008
Abstract
View article
PDF
Systems biology invites us to consider the dynamic interactions between the components of a living cell. Here, by evolving artificial organisms whose genomes encode protein networks, we show that a coupling emerges at the evolutionary time scale between the protein network and the structure of the genome. Gene order is more stable when the protein network is more densely connected, which most likely results from a long-term selection for mutational robustness. Understanding evolving organisms thus requires a systemic approach, taking into account the functional interactions between gene products, but also the global relationships between the genome and the proteome at the evolutionary time scale.
Includes: Supplementary data