Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Isaac Meilijson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2006) 12 (3): 333–352.
Published: 01 July 2006
Abstract
View article
PDF
One of the major challenges in the field of neurally driven evolved autonomous agents is deciphering the neural mechanisms underlying their behavior. Aiming at this goal, we have developed the multi-perturbation Shapley value analysis (MSA)—the first axiomatic and rigorous method for deducing causal function localization from multiple-perturbation data, substantially improving on earlier approaches. Based on fundamental concepts from game theory, the MSA provides a formal way of defining and quantifying the contributions of network elements, as well as the functional interactions between them. The previously presented versions of the MSA require full knowledge (or at least an approximation) of the network's performance under all possible multiple perturbations, limiting their applicability to systems with a small number of elements. This article focuses on presenting new scalable MSA variants, allowing for the analysis of large complex networks in an efficient manner, including large-scale neurocontrollers. The successful operation of the MSA along with the new variants is demonstrated in the analysis of several neurocontrollers solving a food foraging task, consisting of up to 100 neural elements.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2003) 9 (1): 1–20.
Published: 01 January 2003
Abstract
View article
PDF
This article presents a new approach to the important challenge of localizing function in a neurocontroller. The approach is based on the basic functional contribution analysis (FCA) presented earlier, which assigns contribution values to the elements of the network, such that the ability to predict the network's performance in response to multi-unit lesions is maximized. These contribution values quantify the importance of each element to the tasks the agent performs. Here we present a generalization of the basic FCA to high-dimensional analysis, using high-order compound elements. Such elements are composed of conjunctions of simple elements. Their usage enables the explicit expression of sets of neurons or synapses whose contributions are interdependent, a prerequisite for localizing the function of complex neurocontrollers. High-dimensional FCA is shown to significantly improve on the accuracy of the basic analysis, to provide new insights concerning the main subsets of simple elements in the network that interact in a complex nonlinear manner, and to systematically reveal the types of interactions that characterize the evolved neurocontroller.