Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
James M. Borg
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2021) 27 (3–4): 164–182.
Published: 16 March 2022
FIGURES
| View All (8)
Abstract
View article
PDF
Simulations of evolutionary dynamics often employ white noise as a model of stochastic environmental variation. Whilst white noise has the advantages of being simply generated and analytically tractable, empirical analyses demonstrate that most real environmental time series have power spectral densities consistent with pink or red noise, in which lower frequencies contribute proportionally greater amplitudes than higher frequencies. Simulated white noise environments may therefore fail to capture key components of real environmental time series, leading to erroneous results. To explore the effects of different noise colours on evolving populations, a simple evolutionary model of the interaction between life-history and the specialism-generalism axis was developed. Simulations were conducted using a range of noise colours as the environments to which agents adapted. Results demonstrate complex interactions between noise colour, reproductive rate, and the degree of evolved generalism; importantly, contradictory conclusions arise from simulations using white as opposed to red noise, suggesting that noise colour plays a fundamental role in generating adaptive responses. These results are discussed in the context of previous research on evolutionary responses to fluctuating environments, and it is suggested that Artificial Life as a field should embrace a wider spectrum of coloured noise models to ensure that results are truly representative of environmental and evolutionary dynamics.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2020) 26 (4): 431–454.
Published: 01 February 2021
FIGURES
| View All (12)
Abstract
View article
PDF
In a recent article by Borg and Channon it was shown that social information alone, decoupled from any within-lifetime learning, can result in improved performance on a food-foraging task compared to when social information is unavailable. Here we assess whether access to social information leads to significant behavioral differences both when access to social information leads to improved performance on the task, and when it does not: Do any behaviors resulting from social information use, such as movement and increased agent interaction, persist even when the ability to discriminate between poisonous and non-poisonous food is no better than when social information is unavailable? Using a neuroevolutionary artificial life simulation, we show that social information use can lead to the emergence of behaviors that differ from when social information is unavailable, and that these behaviors act as a promoter of agent interaction. The results presented here suggest that the introduction of social information is sufficient, even when decoupled from within-lifetime learning, for the emergence of pro-social behaviors. We believe this work to be the first use of an artificial evolutionary system to explore the behavioral consequences of social information use in the absence of within-lifetime learning.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2018) 24 (1): 5–9.
Published: 01 February 2018
Abstract
View article
PDF
We describe the questions and discussions raised at the First Workshop on Social Learning and Cultural Evolution held at theArtificial Life Conference 2016 in Cancún, Mexico in July 2016. The purpose of the workshop was to assemble artificial life researchers interested in social learning and cultural evolution into one group so that we could focus on recent work and interesting open questions. Our discussion related to both the mechanisms of social learning and cultural evolution and the consequences and influence of social learning and cultural evolution on living systems. We present the contributions of our workshop presenters and conclude with a discussion of the more important open questions in this area.