Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Jeremy Pitt
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2023) 29 (2): 198–234.
Published: 01 May 2023
FIGURES
| View All (11)
Abstract
View article
PDF
Cooperative survival “games” are situations in which, during a sequence of catastrophic events, no one survives unless everyone survives. Such situations can be further exacerbated by uncertainty over the timing and scale of the recurring catastrophes, while the resource management required for survival may depend on several interdependent subgames of resource extraction, distribution, and investment with conflicting priorities and preferences between survivors. In social systems, self-organization has been a critical feature of sustainability and survival; therefore, in this article we use the lens of artificial societies to investigate the effectiveness of socially constructed self-organization for cooperative survival games. We imagine a cooperative survival scenario with four parameters: scale, that is, n in an n -player game; uncertainty, with regard to the occurrence and magnitude of each catastrophe; complexity, concerning the number of subgames to be simultaneously “solved”; and opportunity, with respect to the number of self-organizing mechanisms available to the players. We design and implement a multiagent system for a situation composed of three entangled subgames—a stag hunt game, a common-pool resource management problem, and a collective risk dilemma—and specify algorithms for three self-organizing mechanisms for governance, trading, and forecasting. A series of experiments shows, as perhaps expected, a threshold for a critical mass of survivors and also that increasing dimensions of uncertainty and complexity require increasing opportunity for self-organization. Perhaps less expected are the ways in which self-organizing mechanisms may interact in pernicious but also self-reinforcing ways, highlighting the need for some reflection as a process in collective self-governance for cooperative survival.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2023) 29 (1): 37–65.
Published: 02 January 2023
FIGURES
| View All (8)
Abstract
View article
PDF
In many social, cyber-physical, and socio-technical systems, a group of autonomous peers can encounter a knowledge aggregation problem, requiring them to organise themselves, without a centralised authority, as a distributed information processing unit (DIP). In this article, we specify and implement a new algorithm for knowledge aggregation based on Nowak’s psychological theory Regulatory Theory of Social Influence (RTSI). This theory posits that social influence consists of not only sources trying to influence targets, but also targets seeking sources by whom to be influenced and learning what processing rules those sources are using. A multi-agent simulator SMARTSIS is implemented to evaluate the algorithm, using as its base scenario a linear public goods game where the DIP’s decision is a qualitative question of distributive justice. In a series of experiments examining the emergence of expertise, we show how RTSI enhances the effectiveness of the multi-agent DIP as a social group while conserving each agent’s individual resources. Additionally, we identify eight criteria for evaluating the DIP unit’s performance, consisting of four conflicting pairs of systemic drivers, and discuss how RTSI maintains a balanced tension between the four driver pairs through the emergence and divergence of expertise. We conclude by arguing that this shows how psychological theories like RTSI can have a crucial role in informing agent-based models of human behaviour, which in turn may be critically important for effective knowledge management and reflective self-improvement in both cyber-physical and socio-technical systems.