Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Joel Lehman
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2020) 26 (2): 274–306.
Published: 01 May 2020
FIGURES
| View All (15)
Abstract
View article
PDF
Evolution provides a creative fount of complex and subtle adaptations that often surprise the scientists who discover them. However, the creativity of evolution is not limited to the natural world: Artificial organisms evolving in computational environments have also elicited surprise and wonder from the researchers studying them. The process of evolution is an algorithmic process that transcends the substrate in which it occurs. Indeed, many researchers in the field of digital evolution can provide examples of how their evolving algorithms and organisms have creatively subverted their expectations or intentions, exposed unrecognized bugs in their code, produced unexpectedly adaptations, or engaged in behaviors and outcomes, uncannily convergent with ones found in nature. Such stories routinely reveal surprise and creativity by evolution in these digital worlds, but they rarely fit into the standard scientific narrative. Instead they are often treated as mere obstacles to be overcome, rather than results that warrant study in their own right. Bugs are fixed, experiments are refocused, and one-off surprises are collapsed into a single data point. The stories themselves are traded among researchers through oral tradition, but that mode of information transmission is inefficient and prone to error and outright loss. Moreover, the fact that these stories tend to be shared only among practitioners means that many natural scientists do not realize how interesting and lifelike digital organisms are and how natural their evolution can be. To our knowledge, no collection of such anecdotes has been published before. This article is the crowd-sourced product of researchers in the fields of artificial life and evolutionary computation who have provided first-hand accounts of such cases. It thus serves as a written, fact-checked collection of scientifically important and even entertaining stories. In doing so we also present here substantial evidence that the existence and importance of evolutionary surprises extends beyond the natural world, and may indeed be a universal property of all complex evolving systems.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2015) 21 (1): 21–46.
Published: 01 February 2015
FIGURES
| View All (6)
Abstract
View article
PDF
An important goal in both artificial life and biology is uncovering the most general principles underlying life, which might catalyze both our understanding of life and engineering lifelike machines. While many such general principles have been hypothesized, conclusively testing them is difficult because life on Earth provides only a singular example from which to infer. To circumvent this limitation, this article formalizes an approach called radical reimplementation . The idea is to investigate an abstract biological hypothesis by intentionally reimplementing its main principles to diverge maximally from existing natural examples. If the reimplementation successfully exhibits properties resembling biology, it may support the underlying hypothesis better than an alternative example inspired more directly by nature. The approach thereby provides a principled alternative to a common tradition of defending and minimizing deviations from nature in artificial life. This work reviews examples that can be interpreted through the lens of radical reimplementation to yield potential insights into biology despite having purposely unnatural experimental setups. In this way, radical reimplementation can help renew the relevance of computational systems for investigating biological theory and can act as a practical philosophical tool to help separate the fundamental features of terrestrial biology from the epiphenomenal.