Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-6 of 6
Josh Bongard
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2020) 26 (1): 90–111.
Published: 01 April 2020
FIGURES
| View All (16)
Abstract
View article
PDF
Many factors influence the evolvability of populations, and this article illustrates how intrinsic mortality (death induced through internal factors) in an evolving population contributes favorably to evolvability on a fixed deceptive fitness landscape. We test for evolvability using the hierarchical if-and-only-if ( h - iff ) function as a deceptive fitness landscape together with a steady state genetic algorithm (SSGA) with a variable mutation rate and indiscriminate intrinsic mortality rate. The mutation rate and the intrinsic mortality rate display a relationship for finding the global maximum. This relationship was also found when implementing the same deceptive fitness landscape in a spatial model consisting of an evolving population. We also compared the performance of the optimal mutation and mortality rate with a state-of-the-art evolutionary algorithm called age-fitness Pareto optimization (AFPO) and show how the two approaches traverse the h - iff landscape differently. Our results indicate that the intrinsic mortality rate and mutation rate induce random genetic drift that allows a population to efficiently traverse a deceptive fitness landscape. This article gives an overview of how intrinsic mortality influences the evolvability of a population. It thereby supports the premise that programmed death of individuals could have a beneficial effect on the evolvability of the entire population.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2017) 23 (3): 351–373.
Published: 01 August 2017
FIGURES
| View All (9)
Abstract
View article
PDF
In some evolutionary robotics experiments, evolved robots are transferred from simulation to reality, while sensor/motor data flows back from reality to improve the next transferral. We envision a generalization of this approach: a simulation-to-reality pipeline. In this pipeline, increasingly embodied agents flow up through a sequence of increasingly physically realistic simulators, while data flows back down to improve the next transferral between neighboring simulators; physical reality is the last link in this chain. As a first proof of concept, we introduce a two-link chain: A fast yet low-fidelity ( lo-fi ) simulator hosts minimally embodied agents, which gradually evolve controllers and morphologies to colonize a slow yet high-fidelity ( hi-fi ) simulator. The agents are thus physically scaffolded . We show here that, given the same computational budget, these physically scaffolded robots reach higher performance in the hi-fi simulator than do robots that only evolve in the hi-fi simulator, but only for a sufficiently difficult task. These results suggest that a simulation-to-reality pipeline may strike a good balance between accelerating evolution in simulation while anchoring the results in reality, free the investigator from having to prespecify the robot's morphology, and pave the way to scalable, automated, robot-generating systems.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2016) 22 (3): 364–407.
Published: 01 August 2016
FIGURES
| View All (14)
Abstract
View article
PDF
We present a survey of the first 21 years of web-based artificial life (WebAL) research and applications, broadly construed to include the many different ways in which artificial life and web technologies might intersect. Our survey covers the period from 1994—when the first WebAL work appeared—up to the present day, together with a brief discussion of relevant precursors. We examine recent projects, from 2010–2015, in greater detail in order to highlight the current state of the art. We follow the survey with a discussion of common themes and methodologies that can be observed in recent work and identify a number of likely directions for future work in this exciting area.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2010) 16 (3): 201–223.
Published: 01 July 2010
Abstract
View article
PDF
Embodied artificial intelligence argues that the body and brain play equally important roles in the generation of adaptive behavior. An increasingly common approach therefore is to evolve an agent's morphology along with its control in the hope that evolution will find a good coupled system. In order for embodied artificial intelligence to gain credibility within the robotics and cognitive science communities, however, it is necessary to amass evidence not only for how to co-optimize morphology and control of adaptive machines, but why . This work provides two new lines of evidence for why this co-optimization is useful: Here we show that for an object manipulation task in which a simulated robot must accomplish one, two, or three objectives simultaneously, subjugating more aspects of the robot's morphology to selective pressure allows for the evolution of better robots as the number of objectives increases. In addition, for robots that successfully evolved to accomplish all of their objectives, those composed of evolved rather than fixed morphologies generalized better to previously unseen environmental conditions.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2008) 14 (2): 227–229.
Published: 01 April 2008
Journal Articles
Publisher: Journals Gateway
Artificial Life (2005) 11 (1-2): 99–120.
Published: 01 January 2005
Abstract
View article
PDF
New robotics is an approach to robotics that, in contrast to traditional robotics, employs ideas and principles from biology. While in the traditional approach there are generally accepted methods (e.g., from control theory), designing agents in the new robotics approach is still largely considered an art. In recent years, we have been developing a set of heuristics, or design principles, that on the one hand capture theoretical insights about intelligent (adaptive) behavior, and on the other provide guidance in actually designing and building systems. In this article we provide an overview of all the principles but focus on the principles of ecological balance , which concerns the relation between environment, morphology, materials, and control, and sensory-motor coordination , which concerns self-generated sensory stimulation as the agent interacts with the environment and which is a key to the development of high-level intelligence. As we argue, artificial evolution together with morphogenesis is not only “nice to have” but is in fact a necessary tool for designing embodied agents.