Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-2 of 2
Kyle Harrington
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2019) 25 (1): 22–32.
Published: 01 April 2019
FIGURES
| View All (4)
Abstract
View article
PDF
The escalation of complexity is a commonly cited benefit of coevolutionary systems, but computational simulations generally fail to demonstrate this capacity to a satisfactory degree. We draw on a macroevolutionary theory of escalation to develop a set of criteria for coevolutionary systems to exhibit escalation of strategic complexity. By expanding on a previously developed model of the evolution of memory length for cooperative strategies by Kristian Lindgren, we resolve previously observed limitations on the escalation of memory length by extending operators of evolutionary variation. We present long-term coevolutionary simulations showing that larger population sizes tend to support greater escalation of complexity than smaller ones do. Additionally, we investigate the sensitivity of escalation during transitions of complexity. The Lindgren model has often been used to argue that the escalation of competitive coevolution has intrinsic limitations. Our simulations show that coevolutionary arms races can continue to escalate in computational simulations given sufficient population sizes.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2018) 24 (4): 296–328.
Published: 01 March 2019
FIGURES
| View All (21)
Abstract
View article
PDF
In nature, gene regulatory networks are a key mediator between the information stored in the DNA of living organisms (their genotype) and the structural and behavioral expression this finds in their bodies, surviving in the world (their phenotype). They integrate environmental signals, steer development, buffer stochasticity, and allow evolution to proceed. In engineering, modeling and implementations of artificial gene regulatory networks have been an expanding field of research and development over the past few decades. This review discusses the concept of gene regulation, describes the current state of the art in gene regulatory networks, including modeling and simulation, and reviews their use in artificial evolutionary settings. We provide evidence for the benefits of this concept in natural and the engineering domains.