Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
M. D'Angelo
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2017) 23 (1): 80–104.
Published: 01 February 2017
FIGURES
| View All (16)
Abstract
View article
PDF
Evolutionary robotics using real hardware is currently restricted to evolving robot controllers, but the technology for evolvable morphologies is advancing quickly. Rapid prototyping (3D printing) and automated assembly are the main enablers of robotic systems where robot offspring can be produced based on a blueprint that specifies the morphologies and the controllers of the parents. This article addresses the problem of gait learning in newborn robots whose morphology is unknown in advance. We investigate a reinforcement learning method and conduct simulation experiments using robot morphologies with different size and complexity. We establish that reinforcement learning does the job well and that it outperforms two alternative algorithms. The experiments also give insights into the online dynamics of gait learning and into the influence of the size, shape, and morphological complexity of the modular robots. These insights can potentially be used to predict the viability of modular robotic organisms before they are constructed.