Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Matthew D. Egbert
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2018) 24 (02): 106–118.
Published: 01 May 2018
FIGURES
| View All (9)
Abstract
View article
PDF
Life and other dissipative structures involve nonlinear dynamics that are not amenable to conventional analysis. Advances are being made in theory, modeling, and simulation techniques, but we do not have general principles for designing, controlling, stabilizing, or eliminating these systems. There is thus a need for tools that can transform high-level descriptions of these systems into useful guidance for their modification and design. In this article we introduce new methods for quantifying the viability of dissipative structures. We then present an information-theoretical approach for evaluating the quality of viability indicators , measurable quantities that covary with, and thus can be used to predict or influence, a system's viability.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2014) 20 (1): 5–28.
Published: 01 January 2014
FIGURES
| View All (8)
Abstract
View article
PDF
Living agency is subject to a normative dimension (good-bad, adaptive-maladaptive) that is absent from other types of interaction. We review current and historical attempts to naturalize normativity from an organism-centered perspective, identifying two central problems and their solution: (1) How to define the topology of the viability space so as to include a sense of gradation that permits reversible failure, and (2) how to relate both the processes that establish norms and those that result in norm-following behavior. We present a minimal metabolic system that is coupled to a gradient-climbing chemotactic mechanism. Studying the relationship between metabolic dynamics and environmental resource conditions, we identify an emergent viable region and a precarious region where the system tends to die unless environmental conditions change. We introduce the concept of normative field as the change of environmental conditions required to bring the system back to its viable region. Norm-following , or normative action , is defined as the course of behavior whose effect is positively correlated with the normative field. We close with a discussion of the limitations and extensions of our model and some final reflections on the nature of norms and teleology in agency.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2011) 18 (1): 1–25.
Published: 01 December 2011
FIGURES
| View All (15)
Abstract
View article
PDF
We use a minimal model of metabolism-based chemotaxis to show how a coupling between metabolism and behavior can affect evolutionary dynamics in a process we refer to as behavioral metabolution . This mutual influence can function as an in-the-moment, intrinsic evaluation of the adaptive value of a novel situation, such as an encounter with a compound that activates new metabolic pathways. Our model demonstrates how changes to metabolic pathways can lead to improvement of behavioral strategies, and conversely, how behavior can contribute to the exploration and fixation of new metabolic pathways. These examples indicate the potentially important role that the interplay between behavior and metabolism could have played in shaping adaptive evolution in early life and protolife. We argue that the processes illustrated by these models can be interpreted as an unorthodox instantiation of the principles of evolution by random variation and selective retention. We then discuss how the interaction between metabolism and behavior can facilitate evolution through (i) increasing exposure to environmental variation, (ii) making more likely the fixation of some beneficial metabolic pathways, (iii) providing a mechanism for in-the-moment adaptation to changes in the environment and to changes in the organization of the organism itself, and (iv) generating conditions that are conducive to speciation.