Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Peter Wang
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2017) 23 (1): 34–57.
Published: 01 February 2017
FIGURES
| View All (8)
Abstract
View article
PDF
We develop and apply several novel methods quantifying dynamic multi-agent team interactions. These interactions are detected information-theoretically and captured in two ways: via (i) directed networks (interaction diagrams) representing significant coupled dynamics between pairs of agents, and (ii) state-space plots (coherence diagrams) showing coherent structures in Shannon information dynamics. This model-free analysis relates, on the one hand, the information transfer to responsiveness of the agents and the team, and, on the other hand, the information storage within the team to the team's rigidity and lack of tactical flexibility. The resultant interaction and coherence diagrams reveal implicit interactions, across teams, that may be spatially long-range. The analysis was verified with a statistically significant number of experiments (using simulated football games, produced during RoboCup 2D Simulation League matches), identifying the zones of the most intense competition, the extent and types of interactions, and the correlation between the strength of specific interactions and the results of the matches.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2005) 11 (4): 407–426.
Published: 01 October 2005
Abstract
View article
PDF
We consider a hierarchical multicellular sensing and communication network, embedded in an ageless aerospace vehicle that is expected to detect and react to multiple impacts and damage over a wide range of impact energies. In particular, we investigate self-organization of impact boundaries enclosing critically damaged areas, and impact networks connecting remote cells that have detected noncritical impacts. Each level of the hierarchy is shown to have distinct higher-order emergent properties, desirable in self-monitoring and self-repairing vehicles. In addition, cells and communication messages are shown to need memory (hysteresis) in order to retain desirable emergent behavior within and between various hierarchical levels. Spatiotemporal robustness of self-organizing hierarchies is quantitatively measured with graph-theoretic and information-theoretic techniques, such as the Shannon entropy. This allows us to clearly identify phase transitions separating chaotic dynamics from ordered and robust patterns.