Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-4 of 4
Rudolf M. Füchslin
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2022) 28 (2): 171–172.
Published: 28 June 2022
Journal Articles
Publisher: Journals Gateway
Artificial Life (2013) 19 (1): 1–8.
Published: 01 January 2013
Journal Articles
Publisher: Journals Gateway
Artificial Life (2013) 19 (1): 9–34.
Published: 01 January 2013
FIGURES
| View All (9)
Abstract
View article
PDF
Morphological computation can be loosely defined as the exploitation of the shape, material properties, and physical dynamics of a physical system to improve the efficiency of a computation. Morphological control is the application of morphological computing to a control task. In its theoretical part, this article sharpens and extends these definitions by suggesting new formalized definitions and identifying areas in which the definitions we propose are still inadequate. We go on to describe three ongoing studies, in which we are applying morphological control to problems in medicine and in chemistry. The first involves an inflatable support system for patients with impaired movement, and is based on macroscopic physics and concepts already tested in robotics. The two other case studies (self-assembly of chemical microreactors; models of induced cell repair in radio-oncology) describe processes and devices on the micrometer scale, in which the emergent dynamics of the underlying physical system (e.g., phase transitions) are dominated by stochastic processes such as diffusion.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2004) 10 (1): 23–38.
Published: 01 January 2004
Abstract
View article
PDF
Sequence folding is known to determine the spatial structure and catalytic function of proteins and nucleic acids. We show here that folding also plays a key role in enhancing the evolutionary stability of the intermolecular recognition necessary for the prevalent mode of catalytic action in replication, namely, in trans , one molecule catalyzing the replication of another copy, rather than itself. This points to a novel aspect of why molecular life is structured as it is, in the context of life as it could be: folding allows limited, structurally localized recognition to be strongly sensitive to global sequence changes, facilitating the evolution of cooperative interactions. RNA secondary structure folding, for example is shown to be able to stabilize the evolution of prolonged functional sequences, using only a part of this length extension for intermolecular recognition, beyond the limits of the (cooperative) error threshold. Such folding could facilitate the evolution of polymerases in spatially heterogeneous systems. This facilitation is, in fact, vital because physical limitations prevent complete sequence-dependent discrimination for any significant-size biopolymer substrate. The influence of partial sequence recognition between biopolymer catalysts and complex substrates is investigated within a stochastic, spatially resolved evolutionary model of trans catalysis. We use an analytically tractable nonlinear master equation formulation called PRESS (McCaskill et al., Biol. Chem. 382: 1343–1363), which makes use of an extrapolation of the spatial dynamics down from infinite dimensional space, and compare the results with Monte Carlo simulations.