Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-5 of 5
Sebastian Risi
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2020) 26 (1): 90–111.
Published: 01 April 2020
FIGURES
| View All (16)
Abstract
View article
PDF
Many factors influence the evolvability of populations, and this article illustrates how intrinsic mortality (death induced through internal factors) in an evolving population contributes favorably to evolvability on a fixed deceptive fitness landscape. We test for evolvability using the hierarchical if-and-only-if ( h - iff ) function as a deceptive fitness landscape together with a steady state genetic algorithm (SSGA) with a variable mutation rate and indiscriminate intrinsic mortality rate. The mutation rate and the intrinsic mortality rate display a relationship for finding the global maximum. This relationship was also found when implementing the same deceptive fitness landscape in a spatial model consisting of an evolving population. We also compared the performance of the optimal mutation and mortality rate with a state-of-the-art evolutionary algorithm called age-fitness Pareto optimization (AFPO) and show how the two approaches traverse the h - iff landscape differently. Our results indicate that the intrinsic mortality rate and mutation rate induce random genetic drift that allows a population to efficiently traverse a deceptive fitness landscape. This article gives an overview of how intrinsic mortality influences the evolvability of a population. It thereby supports the premise that programmed death of individuals could have a beneficial effect on the evolvability of the entire population.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2017) 23 (2): 142–168.
Published: 01 May 2017
FIGURES
| View All (20)
Abstract
View article
PDF
Evolutionary robotics is challenged with some key problems that must be solved, or at least mitigated extensively, before it can fulfill some of its promises to deliver highly autonomous and adaptive robots. The reality gap and the ability to transfer phenotypes from simulation to reality constitute one such problem. Another lies in the embodiment of the evolutionary processes, which links to the first, but focuses on how evolution can act on real agents and occur independently from simulation, that is, going from being, as Eiben, Kernbach, & Haasdijk [2012, p. 261] put it, “the evolution of things, rather than just the evolution of digital objects.…” The work presented here investigates how fully autonomous evolution of robot controllers can be realized in hardware, using an industrial robot and a marker-based computer vision system. In particular, this article presents an approach to automate the reconfiguration of the test environment and shows that it is possible, for the first time, to incrementally evolve a neural robot controller for different obstacle avoidance tasks with no human intervention. Importantly, the system offers a high level of robustness and precision that could potentially open up the range of problems amenable to embodied evolution.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2016) 22 (3): 364–407.
Published: 01 August 2016
FIGURES
| View All (14)
Abstract
View article
PDF
We present a survey of the first 21 years of web-based artificial life (WebAL) research and applications, broadly construed to include the many different ways in which artificial life and web technologies might intersect. Our survey covers the period from 1994—when the first WebAL work appeared—up to the present day, together with a brief discussion of relevant precursors. We examine recent projects, from 2010–2015, in greater detail in order to highlight the current state of the art. We follow the survey with a discussion of common themes and methodologies that can be observed in recent work and identify a number of likely directions for future work in this exciting area.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2016) 22 (2): 135–137.
Published: 01 May 2016
Journal Articles
Publisher: Journals Gateway
Artificial Life (2012) 18 (4): 331–363.
Published: 01 October 2012
FIGURES
| View All (19)
Abstract
View article
PDF
Intelligence in nature is the product of living brains, which are themselves the product of natural evolution. Although researchers in the field of neuroevolution (NE) attempt to recapitulate this process, artificial neural networks (ANNs) so far evolved through NE algorithms do not match the distinctive capabilities of biological brains. The recently introduced hypercube-based neuroevolution of augmenting topologies (HyperNEAT) approach narrowed this gap by demonstrating that the pattern of weights across the connectivity of an ANN can be generated as a function of its geometry, thereby allowing large ANNs to be evolved for high-dimensional problems. Yet the positions and number of the neurons connected through this approach must be decided a priori by the user and, unlike in living brains, cannot change during evolution. Evolvable-substrate HyperNEAT (ES-HyperNEAT), introduced in this article, addresses this limitation by automatically deducing the node geometry from implicit information in the pattern of weights encoded by HyperNEAT, thereby avoiding the need to evolve explicit placement. This approach not only can evolve the location of every neuron in the network, but also can represent regions of varying density, which means resolution can increase holistically over evolution. ES-HyperNEAT is demonstrated through multi-task, maze navigation, and modular retina domains, revealing that the ANNs generated by this new approach assume natural properties such as neural topography and geometric regularity. Also importantly, ES-HyperNEAT's compact indirect encoding can be seeded to begin with a bias toward a desired class of ANN topographies, which facilitates the evolutionary search. The main conclusion is that ES-HyperNEAT significantly expands the scope of neural structures that evolution can discover.