Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Siddharth Pritam
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2011) 17 (4): 293–314.
Published: 01 October 2011
Abstract
View article
PDF
Small-world networks have been one of the most influential concepts in complex systems science, partly due to their prevalence in naturally occurring networks. It is often suggested that this prevalence is due to an inherent capability to store and transfer information efficiently. We perform an ensemble investigation of the computational capabilities of small-world networks as compared to ordered and random topologies. To generate dynamic behavior for this experiment, we imbue the nodes in these networks with random Boolean functions. We find that the ordered phase of the dynamics (low activity in dynamics) and topologies with low randomness are dominated by information storage, while the chaotic phase (high activity in dynamics) and topologies with high randomness are dominated by information transfer. Information storage and information transfer are somewhat balanced (crossed over) near the small-world regime, providing quantitative evidence that small-world networks do indeed have a propensity to combine comparably large information storage and transfer capacity.