Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Sylvain Cussat-Blanc
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2023) 29 (1): 66–93.
Published: 02 January 2023
FIGURES
| View All (18)
Abstract
View article
PDF
While interest in artificial neural networks (ANNs) has been renewed by the ubiquitous use of deep learning to solve high-dimensional problems, we are still far from general artificial intelligence. In this article, we address the problem of emergent cognitive capabilities and, more crucially, of their detection, by relying on co-evolving creatures with mutable morphology and neural structure. The former is implemented via both static and mobile structures whose shapes are controlled by cubic splines. The latter uses ESHyperNEAT to discover not only appropriate combinations of connections and weights but also to extrapolate hidden neuron distribution. The creatures integrate low-level perceptions (touch/pain proprioceptors, retina-based vision, frequency-based hearing) to inform their actions. By discovering a functional mapping between individual neurons and specific stimuli, we extract a high-level module-based abstraction of a creature’s brain. This drastically simplifies the discovery of relationships between naturally occurring events and their neural implementation. Applying this methodology to creatures resulting from solitary and tag-team co-evolution showed remarkable dynamics such as range-finding and structured communication. Such discovery was made possible by the abstraction provided by the modular ANN which allowed groups of neurons to be viewed as functionally enclosed entities.
Includes: Supplementary data
Journal Articles
Publisher: Journals Gateway
Artificial Life (2018) 24 (4): 296–328.
Published: 01 March 2019
FIGURES
| View All (21)
Abstract
View article
PDF
In nature, gene regulatory networks are a key mediator between the information stored in the DNA of living organisms (their genotype) and the structural and behavioral expression this finds in their bodies, surviving in the world (their phenotype). They integrate environmental signals, steer development, buffer stochasticity, and allow evolution to proceed. In engineering, modeling and implementations of artificial gene regulatory networks have been an expanding field of research and development over the past few decades. This review discusses the concept of gene regulation, describes the current state of the art in gene regulatory networks, including modeling and simulation, and reviews their use in artificial evolutionary settings. We provide evidence for the benefits of this concept in natural and the engineering domains.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2014) 20 (3): 361–383.
Published: 01 July 2014
FIGURES
| View All (18)
Abstract
View article
PDF
All multicellular living beings are created from a single cell. A developmental process, called embryogenesis, takes this first fertilized cell down a complex path of reproduction, migration, and specialization into a complex organism adapted to its environment. In most cases, the first steps of the embryogenesis take place in a protected environment such as in an egg or in utero. Starting from this observation, we propose a new approach to the generation of real robots, strongly inspired by living systems. Our robots are composed of tens of specialized cells, grown from a single cell using a bio-inspired virtual developmental process. Virtual cells, controlled by gene regulatory networks, divide, migrate, and specialize to produce the robot's body plan (morphology), and then the robot is manually built from this plan. Because the robot is as easy to assemble as Lego, the building process could be easily automated.