Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Thomas LaBar
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2019) 25 (3): 250–262.
Published: 01 August 2019
FIGURES
| View All (5)
Abstract
View article
PDF
Populations exposed to a high mutation rate harbor abundant deleterious genetic variation, leading to depressed mean fitness. This reduction in mean fitness presents an opportunity for selection to restore fitness through the evolution of mutational robustness. In extreme cases, selection for mutational robustness can lead to flat genotypes (with low fitness but high robustness) outcompeting fit genotypes (with high fitness but low robustness)—a phenomenon known as survival of the flattest . While this effect was previously explored using the digital evolution system Avida, a complete analysis of the local fitness landscapes of fit and flat genotypes has been lacking, leading to uncertainty about the genetic basis of the survival-of-the-flattest effect. Here, we repeated the survival-of-the-flattest study and analyzed the mutational neighborhoods of fit and flat genotypes. We found that the flat genotypes, compared to the fit genotypes, had a reduced likelihood of deleterious mutations as well as an increased likelihood of neutral and, surprisingly, of lethal mutations. This trend holds for mutants one to four substitutions away from the wild-type sequence. We also found that flat genotypes have, on average, no epistasis between mutations, while fit genotypes have, on average, positive epistasis. Our results demonstrate that the genetic causes of mutational robustness on complex fitness landscapes are multifaceted. While the traditional idea of the survival of the flattest emphasized the evolution of increased neutrality, others have argued for increased mutational sensitivity in response to strong mutational loads. Our results show that both increased neutrality and increased lethality can lead to the evolution of mutational robustness. Furthermore, strong negative epistasis is not required for mutational sensitivity to lead to mutational robustness. Overall, these results suggest that mutational robustness is achieved by minimizing heritable deleterious variation.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2016) 22 (4): 483–498.
Published: 01 November 2016
FIGURES
| View All (5)
Abstract
View article
PDF
The role of historical contingency in the origin of life is one of the great unknowns in modern science. Only one example of life exists—one that proceeded from a single self-replicating organism (or a set of replicating hypercycles) to the vast complexity we see today in Earth's biosphere. We know that emergent life has the potential to evolve great increases in complexity, but it is unknown if evolvability is automatic given any self-replicating organism. At the same time, it is difficult to test such questions in biochemical systems. Laboratory studies with RNA replicators have had some success with exploring the capacities of simple self-replicators, but these experiments are still limited in both capabilities and scope. Here, we use the digital evolution system Avida to explore the interplay between emergent replicators (rare randomly assembled self-replicators) and evolvability. We find that we can classify fixed-length emergent replicators in Avida into two classes based on functional analysis. One class is more evolvable in the sense of optimizing the replicators' replication abilities. However, the other class is more evolvable in the sense of acquiring evolutionary innovations. We tie this tradeoff in evolvability to the structure of the respective classes' replication machinery, and speculate on the relevance of these results to biochemical replicators.