Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Xabier E. Barandiaran
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2014) 20 (4): 471–489.
Published: 01 October 2014
FIGURES
| View All (6)
Abstract
View article
PDF
Intermittency is ubiquitous in animal behavior. We depict a coordination problem that is part of the more general structure of intermittent adaptation: the adjustment-deployment dilemma . It captures the intricate compromise between the time spent in adjusting a response and the time used to deploy it: The adjustment process improves fitness with time, but during deployment fitness of the solution decays as environmental conditions change. We provide a formal characterization of the dilemma, and solve it using computational methods. We find that the optimal solution always results in a high intermittency between adjustment and deployment around a non-maximal fitness value. Furthermore we show that this non-maximal fitness value is directly determined by the ratio between the exponential coefficient of the fitness increase during adjustment and that of its decay coefficient during deployment. We compare the model results with experimental data obtained from observation and measurement of intermittent behavior in animals. Among other phenomena, the model is able to predict the uneven distribution of average duration of search and motion phases found among various species such as fishes, birds, and lizards. Despite the complexity of the problem, it can be shown to be solved by relatively simple mechanisms. We find that a model of a single continuous-time recurrent neuron, with the same parametric configuration, is capable of solving the dilemma for a wide set of conditions. We finally hypothesize that many of the different patterns of intermittent behavior found in nature might respond to optimal solutions of complexified versions of the adjustment-deployment dilemma under different constraints.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2014) 20 (1): 5–28.
Published: 01 January 2014
FIGURES
| View All (8)
Abstract
View article
PDF
Living agency is subject to a normative dimension (good-bad, adaptive-maladaptive) that is absent from other types of interaction. We review current and historical attempts to naturalize normativity from an organism-centered perspective, identifying two central problems and their solution: (1) How to define the topology of the viability space so as to include a sense of gradation that permits reversible failure, and (2) how to relate both the processes that establish norms and those that result in norm-following behavior. We present a minimal metabolic system that is coupled to a gradient-climbing chemotactic mechanism. Studying the relationship between metabolic dynamics and environmental resource conditions, we identify an emergent viable region and a precarious region where the system tends to die unless environmental conditions change. We introduce the concept of normative field as the change of environmental conditions required to bring the system back to its viable region. Norm-following , or normative action , is defined as the course of behavior whose effect is positively correlated with the normative field. We close with a discussion of the limitations and extensions of our model and some final reflections on the nature of norms and teleology in agency.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2011) 18 (1): 1–25.
Published: 01 December 2011
FIGURES
| View All (15)
Abstract
View article
PDF
We use a minimal model of metabolism-based chemotaxis to show how a coupling between metabolism and behavior can affect evolutionary dynamics in a process we refer to as behavioral metabolution . This mutual influence can function as an in-the-moment, intrinsic evaluation of the adaptive value of a novel situation, such as an encounter with a compound that activates new metabolic pathways. Our model demonstrates how changes to metabolic pathways can lead to improvement of behavioral strategies, and conversely, how behavior can contribute to the exploration and fixation of new metabolic pathways. These examples indicate the potentially important role that the interplay between behavior and metabolism could have played in shaping adaptive evolution in early life and protolife. We argue that the processes illustrated by these models can be interpreted as an unorthodox instantiation of the principles of evolution by random variation and selective retention. We then discuss how the interaction between metabolism and behavior can facilitate evolution through (i) increasing exposure to environmental variation, (ii) making more likely the fixation of some beneficial metabolic pathways, (iii) providing a mechanism for in-the-moment adaptation to changes in the environment and to changes in the organization of the organism itself, and (iv) generating conditions that are conducive to speciation.