Skip Nav Destination
Close Modal
Update search
NARROW
Date
Availability
1-5 of 5
Special Issue on Evolution of Physical Systems: Articles
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Artificial Life (2017) 23 (2): 124–141.
Published: 01 May 2017
FIGURES
| View All (10)
Abstract
View article
PDF
One of the major challenges of evolutionary robotics is to transfer robot controllers evolved in simulation to robots in the real world. In this article, we investigate abstraction of the sensory inputs and motor actions as a tool to tackle this problem. Abstraction in robots is simply the use of preprocessed sensory inputs and low-level closed-loop control systems that execute higher-level motor commands. To demonstrate the impact abstraction could have, we evolved two controllers with different levels of abstraction to solve a task of forming an asymmetric triangle with a homogeneous swarm of micro air vehicles. The results show that although both controllers can effectively complete the task in simulation, the controller with the lower level of abstraction is not effective on the real vehicle, due to the reality gap. The controller with the higher level of abstraction is, however, effective both in simulation and in reality, suggesting that abstraction can be a useful tool in making evolved behavior robust to the reality gap. Additionally, abstraction aided in reducing the computational complexity of the simulation environment, speeding up the optimization process. Preeminently, we show that the optimized behavior exploits the environment (in this case the identical behavior of the other robots) and performs input shaping to allow the vehicles to fly into and maintain the required formation, demonstrating clear sensory-motor coordination. This shows that the power of the genetic optimization to find complex correlations is not necessarily lost through abstraction as some have suggested.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2017) 23 (2): 186–205.
Published: 01 May 2017
FIGURES
| View All (12)
Abstract
View article
PDF
Design mining is the use of computational intelligence techniques to iteratively search and model the attribute space of physical objects evaluated directly through rapid prototyping to meet given objectives. It enables the exploitation of novel materials and processes without formal models or complex simulation. In this article, we focus upon the coevolutionary nature of the design process when it is decomposed into concurrent sub-design-threads due to the overall complexity of the task. Using an abstract, tunable model of coevolution, we consider strategies to sample subthread designs for whole-system testing and how best to construct and use surrogate models within the coevolutionary scenario. Drawing on our findings, we then describe the effective design of an array of six heterogeneous vertical-axis wind turbines.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2017) 23 (2): 142–168.
Published: 01 May 2017
FIGURES
| View All (20)
Abstract
View article
PDF
Evolutionary robotics is challenged with some key problems that must be solved, or at least mitigated extensively, before it can fulfill some of its promises to deliver highly autonomous and adaptive robots. The reality gap and the ability to transfer phenotypes from simulation to reality constitute one such problem. Another lies in the embodiment of the evolutionary processes, which links to the first, but focuses on how evolution can act on real agents and occur independently from simulation, that is, going from being, as Eiben, Kernbach, & Haasdijk [2012, p. 261] put it, “the evolution of things, rather than just the evolution of digital objects.…” The work presented here investigates how fully autonomous evolution of robot controllers can be realized in hardware, using an industrial robot and a marker-based computer vision system. In particular, this article presents an approach to automate the reconfiguration of the test environment and shows that it is possible, for the first time, to incrementally evolve a neural robot controller for different obstacle avoidance tasks with no human intervention. Importantly, the system offers a high level of robustness and precision that could potentially open up the range of problems amenable to embodied evolution.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2017) 23 (2): 206–235.
Published: 01 May 2017
FIGURES
| View All (17)
Abstract
View article
PDF
Evolutionary robotics using real hardware has been almost exclusively restricted to evolving robot controllers, but the technology for evolvable morphologies is advancing quickly. We discuss a proof-of-concept study to demonstrate real robots that can reproduce. Following a general system plan, we implement a robotic habitat that contains all system components in the simplest possible form. We create an initial population of two robots and run a complete life cycle, resulting in a new robot, parented by the first two. Even though the individual steps are simplified to the maximum, the whole system validates the underlying concepts and provides a generic workflow for the creation of more complex incarnations. This hands-on experience provides insights and helps us elaborate on interesting research directions for future development.
Journal Articles
Publisher: Journals Gateway
Artificial Life (2017) 23 (2): 169–185.
Published: 01 May 2017
FIGURES
| View All (12)
Abstract
View article
PDF
Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.