Skip Nav Destination
Close Modal
Update search
NARROW
Format
Subjects
Book Series
Date
Availability
1-20 of 392
Bernhard Schölkopf
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0021
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0022
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0023
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0024
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0025
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0026
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0027
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0028
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.001.0001
EISBN: 9780262256933
A comprehensive introduction to Support Vector Machines and related kernel methods. In the 1990s, a new type of learning algorithm was developed, based on results from statistical learning theory: the Support Vector Machine (SVM). This gave rise to a new class of theoretically elegant learning machines that use a central concept of SVMs—-kernels—for a number of learning tasks. Kernel machines provide a modular framework that can be adapted to different tasks and domains by the choice of the kernel function and the base algorithm. They are replacing neural networks in a variety of fields, including engineering, information retrieval, and bioinformatics. Learning with Kernels provides an introduction to SVMs and related kernel methods. Although the book begins with the basics, it also includes the latest research. It provides all of the concepts necessary to enable a reader equipped with some basic mathematical knowledge to enter the world of machine learning using theoretically well-founded yet easy-to-use kernel algorithms and to understand and apply the powerful algorithms that have been developed over the last few years.
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0011
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0012
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0013
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0014
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0015
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0016
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0017
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0018
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0019
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0020
EISBN: 9780262256933
Publisher: The MIT Press
Published: 05 June 2018
DOI: 10.7551/mitpress/4175.003.0001
EISBN: 9780262256933
1