Skip Nav Destination
Close Modal
Update search
NARROW
Format
Subjects
Date
Availability
1-12 of 12
Brendan J. Frey
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Publisher: The MIT Press
Published: 08 July 1998
DOI: 10.7551/mitpress/3348.003.0001
EISBN: 9780262273206
Publisher: The MIT Press
Published: 08 July 1998
DOI: 10.7551/mitpress/3348.003.0002
EISBN: 9780262273206
Publisher: The MIT Press
Published: 08 July 1998
DOI: 10.7551/mitpress/3348.003.0003
EISBN: 9780262273206
Publisher: The MIT Press
Published: 08 July 1998
DOI: 10.7551/mitpress/3348.003.0004
EISBN: 9780262273206
Publisher: The MIT Press
Published: 08 July 1998
DOI: 10.7551/mitpress/3348.003.0005
EISBN: 9780262273206
Publisher: The MIT Press
Published: 08 July 1998
DOI: 10.7551/mitpress/3348.003.0006
EISBN: 9780262273206
Publisher: The MIT Press
Published: 08 July 1998
DOI: 10.7551/mitpress/3348.003.0007
EISBN: 9780262273206
Publisher: The MIT Press
Published: 08 July 1998
DOI: 10.7551/mitpress/3348.003.0008
EISBN: 9780262273206
Publisher: The MIT Press
Published: 08 July 1998
DOI: 10.7551/mitpress/3348.003.0009
EISBN: 9780262273206
Publisher: The MIT Press
Published: 08 July 1998
DOI: 10.7551/mitpress/3348.003.0010
EISBN: 9780262273206
Publisher: The MIT Press
Published: 08 July 1998
DOI: 10.7551/mitpress/3348.003.0011
EISBN: 9780262273206
Publisher: The MIT Press
Published: 08 July 1998
DOI: 10.7551/mitpress/3348.001.0001
EISBN: 9780262273206
A variety of problems in machine learning and digital communication deal with complex but structured natural or artificial systems. In this book, Brendan Frey uses graphical models as an overarching framework to describe and solve problems of pattern classification, unsupervised learning, data compression, and channel coding. Using probabilistic structures such as Bayesian belief networks and Markov random fields, he is able to describe the relationships between random variables in these systems and to apply graph-based inference techniques to develop new algorithms. Among the algorithms described are the wake-sleep algorithm for unsupervised learning, the iterative turbodecoding algorithm (currently the best error-correcting decoding algorithm), the bits-back coding method, the Markov chain Monte Carlo technique, and variational inference.