Skip Nav Destination
Close Modal
Update search
NARROW
Format
Subjects
Date
Availability
1-20 of 71
Clark Glymour
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0011
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0012
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0013
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0014
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0015
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0016
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0017
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0018
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0019
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0020
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0021
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0022
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.001.0001
EISBN: 9780262273961
The use of Bayes nets and graphical causal models in the investigation of human learning of causal relations, and in modeling and inference in cognitive psychology. In recent years, small groups of statisticians, computer scientists, and philosophers have developed an account of how partial causal knowledge can be used to compute the effect of actions and how causal relations can be learned, at least by computers. The representations used in the emerging theory are causal Bayes nets or graphical causal models. In his new book, Clark Glymour provides an informal introduction to the basic assumptions, algorithms, and techniques of causal Bayes nets and graphical causal models in the context of psychological examples. He demonstrates their potential as a powerful tool for guiding experimental inquiry and for interpreting results in developmental psychology, cognitive neuropsychology, psychometrics, social psychology, and studies of adult judgment. Using Bayes net techniques, Glymour suggests novel experiments to distinguish among theories of human causal learning and reanalyzes various experimental results that have been interpreted or misinterpreted—without the benefit of Bayes nets and graphical causal models. The capstone illustration is an analysis of the methods used in Herrnstein and Murray's book The Bell Curve ; Glymour argues that new, more reliable methods of data analysis, based on Bayes nets representations, would lead to very different conclusions from those advocated by Herrnstein and Murray.
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0001
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0002
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0003
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0004
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0005
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0006
EISBN: 9780262273961
Publisher: The MIT Press
Published: 07 December 2001
DOI: 10.7551/mitpress/4638.003.0007
EISBN: 9780262273961