Skip Nav Destination
Close Modal
Update search
NARROW
Format
Subjects
Date
Availability
1-20 of 110
Daniel N. Osherson
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0011
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0012
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0014
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0015
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0016
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0017
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0018
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0019
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0020
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0021
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.001.0001
EISBN: 9780262276252
Formal learning theory is one of several mathematical approaches to the study of intelligent adaptation to the environment. The analysis developed in this book is based on a number theoretical approach to learning and uses the tools of recursive-function theory to understand how learners come to an accurate view of reality. This revised and expanded edition of a successful text provides a comprehensive, self-contained introduction to the concepts and techniques of the theory. Exercises throughout the text provide experience in the use of computational arguments to prove facts about learning.
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0001
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0002
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0004
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0005
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0006
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0007
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
EISBN: 9780262276252