Skip Nav Destination
Close Modal
Update search
NARROW
Format
Subjects
Date
Availability
1-20 of 24
Geoff Holmes
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0011
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0012
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0013
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0014
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0015
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0016
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0017
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0018
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0019
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0020
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0021
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0022
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0023
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.001.0001
EISBN: 9780262346047
A hands-on approach to tasks and techniques in data stream mining and real-time analytics, with examples in MOA, a popular freely available open-source software framework. Today many information sources—including sensor networks, financial markets, social networks, and healthcare monitoring—are so-called data streams, arriving sequentially and at high speed. Analysis must take place in real time, with partial data and without the capacity to store the entire data set. This book presents algorithms and techniques used in data stream mining and real-time analytics. Taking a hands-on approach, the book demonstrates the techniques using MOA (Massive Online Analysis), a popular, freely available open-source software framework, allowing readers to try out the techniques after reading the explanations. The book first offers a brief introduction to the topic, covering big data mining, basic methodologies for mining data streams, and a simple example of MOA. More detailed discussions follow, with chapters on sketching techniques, change, classification, ensemble methods, regression, clustering, and frequent pattern mining. Most of these chapters include exercises, an MOA-based lab session, or both. Finally, the book discusses the MOA software, covering the MOA graphical user interface, the command line, use of its API, and the development of new methods within MOA. The book will be an essential reference for readers who want to use data stream mining as a tool, researchers in innovation or data stream mining, and programmers who want to create new algorithms for MOA.
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0001
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0002
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0003
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0004
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0005
EISBN: 9780262346047
Publisher: The MIT Press
Published: 02 March 2018
DOI: 10.7551/mitpress/10654.003.0006
EISBN: 9780262346047
1