Skip Nav Destination
Close Modal
Update search
NARROW
Format
Subjects
Date
Availability
1-20 of 22
Sanjay Jain
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0011
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0012
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0014
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0015
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0016
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0017
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0018
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0019
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0020
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0021
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.001.0001
EISBN: 9780262276252
Formal learning theory is one of several mathematical approaches to the study of intelligent adaptation to the environment. The analysis developed in this book is based on a number theoretical approach to learning and uses the tools of recursive-function theory to understand how learners come to an accurate view of reality. This revised and expanded edition of a successful text provides a comprehensive, self-contained introduction to the concepts and techniques of the theory. Exercises throughout the text provide experience in the use of computational arguments to prove facts about learning.
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0001
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0002
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0004
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0005
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0006
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
DOI: 10.7551/mitpress/6610.003.0007
EISBN: 9780262276252
Publisher: The MIT Press
Published: 16 February 1999
EISBN: 9780262276252