This article describes a method for composing fluent and complex natural language questions, while avoiding the standard pitfalls of free text queries. The method, based on Conceptual Authoring, is targeted at question-answering systems where reliability and transparency are critical, and where users cannot be expected to undergo extensive training in question composition. This scenario is found in most corporate domains, especially in applications that are risk-averse. We present a proof-of-concept system we have developed: a question-answering interface to a large repository of medical histories in the area of cancer. We show that the method allows users to successfully and reliably compose complex queries with minimal training.

This content is only available as a PDF.