Abstract

This article describes an experiment to evaluate the impact of different types of ellipses discussed in theoretical linguistics on Neural Machine Translation (NMT), using English to Hindi/Telugu as source and target languages. Evaluation with manual methods shows that most of the errors made by Google NMT are located in the clause containing the ellipsis, the frequency of such errors is slightly more in Telugu than Hindi, and the translation adequacy shows improvement when ellipses are reconstructed with their antecedents. These findings not only confirm the importance of ellipses and their resolution for MT, but also hint towards a possible correlation between the translation of discourse devices like ellipses with the morphological incongruity of the source and target. We also observe that not all ellipses are translated poorly and benefit from reconstruction, advocating for a disparate treatment of different ellipses in MT research.

This content is only available as a PDF.
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transfromed, or built upon, and the appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.

Article PDF first page preview

Article PDF first page preview