This study explores the cognitive mechanisms underlying human language acquisition through grammar induction by a minimal cognitive architecture, with a short and flexible sequence memory as its most central feature. We use reinforcement learning for the task of identifying sentences in a stream of words from artificial languages. Results demonstrate the model’s ability to identify frequent and informative multi-word chunks, reproducing characteristics of natural language acquisition. The model successfully navigates varying degrees of linguistic complexity, exposing efficient adaptation to combinatorial challenges through the reuse of sequential patterns. The emergence of parsimonious tree structures suggests an optimization for the sentence identification task, balancing economy and information. The cognitive architecture reflects aspects of human memory systems and decision-making processes, enhancing its cognitive plausibility. While the model exhibits limitations in generalization and semantic representation, its minimalist nature offers insights into some fundamental mechanisms of language learning. Our study demonstrates the power of this simple architecture and stresses the importance of sequence memory in language learning. Since other animals do not seem to have faithful sequence memory, this may be a key to understanding why only humans have developed complex languages.

This content is only available as a PDF.

Author notes

Action editor: Marianna Apidianaki, Abdellah Fourtassi, and Sebastian Padó

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.

Article PDF first page preview

Article PDF first page preview