Adversarial examples pose a significant challenge to deep neural networks across both image and text domains, with the intent to degrade model performance through carefully altered inputs. Adversarial texts, however, are distinct from adversarial images due to their requirement for semantic similarity and the discrete nature of the textual contents. This study delves into the concept of human suspiciousness, a quality distinct from the traditional focus on imperceptibility found in image-based adversarial examples, where adversarial changes are often desired to be indistinguishable to the human eye even when placed side by side with originals. Although this is generally not possible with text, textual adversarial content must still often remain undetected or non-suspicious to human readers. Even when the text’s purpose is to deceive NLP systems or bypass filters, the text is often expected to be natural to read.

In this research, we expand the study of human suspiciousness by analyzing how individuals perceive adversarial texts. We gather and publish a novel dataset of Likert-scale human evaluations on the suspiciousness of adversarial sentences, crafted by four widely used adversarial attack methods and assess their correlation with the human ability to detect machine-generated alterations. Additionally, we develop a regression-based model to predict levels of suspiciousness and establish a baseline for future research in reducing the suspiciousness in adversarial text generation. We also demonstrate how the regressor-generated suspicious scores can be incorporated into adversarial generation methods to produce texts that are less likely to be perceived as computer-generated.

Author notes

Action Editor: Rico Sennrich

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.