Abstract
This position paper’s primary goal is to provoke thoughtful discussion about the relationship between bias and fundamental properties of large language models. I do this by seeking to convince the reader that harmful biases are an inevitable consequence arising from the design of any large language model as LLMs are currently formulated. To the extent that this is true, it suggests that the problem of harmful bias cannot be properly addressed without a serious reconsideration of AI driven by LLMs, going back to the foundational assumptions underlying their design.
This content is only available as a PDF.
Author notes
Action editor: Saif Mohammad
© 2025 Association for Computational Linguistics. Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.
2025
Association for Computational Linguistics
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits you to copy and redistribute in any medium or format, for non-commercial use only, provided that the original work is not remixed, transformed, or built upon, and that appropriate credit to the original source is given. For a full description of the license, please visit https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.