Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
Date
Availability
1-1 of 1
Ananda Theertha Suresh
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2021) 47 (2): 221–254.
Published: 13 July 2021
FIGURES
| View All (8)
Abstract
View article
PDF
Weighted finite automata (WFAs) are often used to represent probabilistic models, such as n-gram language models, because among other things, they are efficient for recognition tasks in time and space. The probabilistic source to be represented as a WFA, however, may come in many forms. Given a generic probabilistic model over sequences, we propose an algorithm to approximate it as a WFA such that the Kullback-Leibler divergence between the source model and the WFA target model is minimized. The proposed algorithm involves a counting step and a difference of convex optimization step, both of which can be performed efficiently. We demonstrate the usefulness of our approach on various tasks, including distilling n-gram models from neural models, building compact language models, and building open-vocabulary character models. The algorithms used for these experiments are available in an open-source software library.