Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Caroline Sporleder
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2014) 40 (3): 671–685.
Published: 01 September 2014
FIGURES
| View All (4)
Abstract
View article
PDF
Information-theoretic measures are among the most standard techniques for evaluation of clustering methods including word sense induction (WSI) systems. Such measures rely on sample-based estimates of the entropy. However, the standard maximum likelihood estimates of the entropy are heavily biased with the bias dependent on, among other things, the number of clusters and the sample size. This makes the measures unreliable and unfair when the number of clusters produced by different systems vary and the sample size is not exceedingly large. This corresponds exactly to the setting of WSI evaluation where a ground-truth cluster sense number arguably does not exist and the standard evaluation scenarios use a small number of instances of each word to compute the score. We describe more accurate entropy estimators and analyze their performance both in simulations and on evaluation of WSI systems.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2012) 38 (2): 223–260.
Published: 01 June 2012
Abstract
View article
PDF
Traditionally, most research in NLP has focused on propositional aspects of meaning. To truly understand language, however, extra-propositional aspects are equally important. Modality and negation typically contribute significantly to these extra-propositional meaning aspects. Although modality and negation have often been neglected by mainstream computational linguistics, interest has grown in recent years, as evidenced by several annotation projects dedicated to these phenomena. Researchers have started to work on modeling factuality, belief and certainty, detecting speculative sentences and hedging, identifying contradictions, and determining the scope of expressions of modality and negation. In this article, we will provide an overview of how modality and negation have been modeled in computational linguistics.