Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-3 of 3
Claire Gardent
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2017) 43 (1): 1–30.
Published: 01 April 2017
FIGURES
| View All (5)
Abstract
View article
PDF
Although there has been much work in recent years on data-driven natural language generation, little attention has been paid to the fine-grained interactions that arise during microplanning between aggregation, surface realization, and sentence segmentation. In this article, we propose a hybrid symbolic/statistical approach to jointly model the constraints regulating these interactions. Our approach integrates a small handwritten grammar, a statistical hypertagger, and a surface realization algorithm. It is applied to the verbalization of knowledge base queries and tested on 13 knowledge bases to demonstrate domain independence. We evaluate our approach in several ways. A quantitative analysis shows that the hybrid approach outperforms a purely symbolic approach in terms of both speed and coverage. Results from a human study indicate that users find the output of this hybrid statistic/symbolic system more fluent than both a template-based and a purely symbolic grammar-based approach. Finally, we illustrate by means of examples that our approach can account for various factors impacting aggregation, sentence segmentation, and surface realization.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2015) 41 (1): 41–70.
Published: 01 March 2015
FIGURES
| View All (19)
Abstract
View article
PDF
In parsing with Tree Adjoining Grammar (TAG), independent derivations have been shown by Schabes and Shieber (1994) to be essential for correctly supporting syntactic analysis, semantic interpretation, and statistical language modeling. However, the parsing algorithm they propose is not directly applicable to Feature-Based TAGs (FB-TAG). We provide a recognition algorithm for FB-TAG that supports both dependent and independent derivations. The resulting algorithm combines the benefits of independent derivations with those of Feature-Based grammars. In particular, we show that it accounts for a range of interactions between dependent vs. independent derivation on the one hand, and syntactic constraints, linear ordering, and scopal vs. nonscopal semantic dependencies on the other hand.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2013) 39 (3): 591–629.
Published: 01 September 2013
FIGURES
| View All (10)
Abstract
View article
PDF
In this article, we introduce eXtensible MetaGrammar (XMG), a framework for specifying tree-based grammars such as Feature-Based Lexicalized Tree-Adjoining Grammars (FB-LTAG) and Interaction Grammars (IG). We argue that XMG displays three features that facilitate both grammar writing and a fast prototyping of tree-based grammars. Firstly, XMG is fully declarative. For instance, it permits a declarative treatment of diathesis that markedly departs from the procedural lexical rules often used to specify tree-based grammars. Secondly, the XMG language has a high notational expressivity in that it supports multiple linguistic dimensions, inheritance, and a sophisticated treatment of identifiers. Thirdly, XMG is extensible in that its computational architecture facilitates the extension to other linguistic formalisms. We explain how this architecture naturally supports the design of three linguistic formalisms, namely, FB-LTAG, IG, and Multi-Component Tree-Adjoining Grammar (MC-TAG). We further show how it permits a straightforward integration of additional mechanisms such as linguistic and formal principles. To further illustrate the declarativity, notational expressivity, and extensibility of XMG, we describe the methodology used to specify an FB-LTAG for French augmented with a unification-based compositional semantics. This illustrates both how XMG facilitates the modeling of the tree fragment hierarchies required to specify tree-based grammars and of a syntax/semantics interface between semantic representations and syntactic trees. Finally, we briefly report on several grammars for French, English, and German that were implemented using XMG and compare XMG with other existing grammar specification frameworks for tree-based grammars.