Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-1 of 1
Denys Duchier
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2013) 39 (3): 591–629.
Published: 01 September 2013
FIGURES
| View All (10)
Abstract
View article
PDF
In this article, we introduce eXtensible MetaGrammar (XMG), a framework for specifying tree-based grammars such as Feature-Based Lexicalized Tree-Adjoining Grammars (FB-LTAG) and Interaction Grammars (IG). We argue that XMG displays three features that facilitate both grammar writing and a fast prototyping of tree-based grammars. Firstly, XMG is fully declarative. For instance, it permits a declarative treatment of diathesis that markedly departs from the procedural lexical rules often used to specify tree-based grammars. Secondly, the XMG language has a high notational expressivity in that it supports multiple linguistic dimensions, inheritance, and a sophisticated treatment of identifiers. Thirdly, XMG is extensible in that its computational architecture facilitates the extension to other linguistic formalisms. We explain how this architecture naturally supports the design of three linguistic formalisms, namely, FB-LTAG, IG, and Multi-Component Tree-Adjoining Grammar (MC-TAG). We further show how it permits a straightforward integration of additional mechanisms such as linguistic and formal principles. To further illustrate the declarativity, notational expressivity, and extensibility of XMG, we describe the methodology used to specify an FB-LTAG for French augmented with a unification-based compositional semantics. This illustrates both how XMG facilitates the modeling of the tree fragment hierarchies required to specify tree-based grammars and of a syntax/semantics interface between semantic representations and syntactic trees. Finally, we briefly report on several grammars for French, English, and German that were implemented using XMG and compare XMG with other existing grammar specification frameworks for tree-based grammars.