Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Enrique Vidal
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2009) 35 (1): 3–28.
Published: 01 March 2009
Abstract
View article
PDF
Current machine translation (MT) systems are still not perfect. In practice, the output from these systems needs to be edited to correct errors. A way of increasing the productivity of the whole translation process (MT plus human work) is to incorporate the human correction activities within the translation process itself, thereby shifting the MT paradigm to that of computer-assisted translation. This model entails an iterative process in which the human translator activity is included in the loop: In each iteration, a prefix of the translation is validated (accepted or amended) by the human and the system computes its best (or n -best) translation suffix hypothesis to complete this prefix. A successful framework for MT is the so-called statistical (or pattern recognition) framework. Interestingly, within this framework, the adaptation of MT systems to the interactive scenario affects mainly the search process, allowing a great reuse of successful techniques and models. In this article, alignment templates, phrase-based models, and stochastic finite-state transducers are used to develop computer-assisted translation systems. These systems were assessed in a European project (TransType2) in two real tasks: The translation of printer manuals; manuals and the translation of the Bulletin of the European Union . In each task, the following three pairs of languages were involved (in both translation directions): English-Spanish, English-German, and English-French.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2004) 30 (2): 205–225.
Published: 01 June 2004
Abstract
View article
PDF
Finite-state transducers are models that are being used in different areas of pattern recognition and computational linguistics. One of these areas is machine translation, in which the approaches that are based on building models automatically from training examples are becoming more and more attractive. Finite-state transducers are very adequate for use in constrained tasks in which training samples of pairs of sentences are available. A technique for inferring finite-state transducers is proposed in this article. This technique is based on formal relations between finite-state transducers and rational grammars. Given a training corpus of source-target pairs of sentences, the proposed approach uses statistical alignment methods to produce a set of conventional strings from which a stochastic rational grammar (e.g., an n -gram) is inferred. This grammar is finally converted into a finite-state transducer. The proposed methods are assessed through a series of machine translation experiments within the framework of the E u Trans project.