Skip Nav Destination
Close Modal
Update search
NARROW
Format
Journal
TocHeadingTitle
Date
Availability
1-2 of 2
Frank Keller
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2013) 39 (4): 1025–1066.
Published: 01 December 2013
FIGURES
| View All (15)
Abstract
View article
PDF
Psycholinguistic research shows that key properties of the human sentence processor are incrementality, connectedness (partial structures contain no unattached nodes), and prediction (upcoming syntactic structure is anticipated). There is currently no broad-coverage parsing model with these properties, however. In this article, we present the first broad-coverage probabilistic parser for PLTAG, a variant of TAG that supports all three requirements. We train our parser on a TAG-transformed version of the Penn Treebank and show that it achieves performance comparable to existing TAG parsers that are incremental but not predictive. We also use our PLTAG model to predict human reading times, demonstrating a better fit on the Dundee eye-tracking corpus than a standard surprisal model.
Journal Articles
Publisher: Journals Gateway
Computational Linguistics (2003) 29 (3): 459–484.
Published: 01 September 2003
Abstract
View article
PDF
This article shows that the Web can be employed to obtain frequencies for bigrams that are unseen in a given corpus. We describe a method for retrieving counts for adjective-noun, noun-noun, and verb-object bigrams from the Web by querying a search engine. We evaluate this method by demonstrating: (a) a high correlation between Web frequencies and corpus frequencies; (b) a reliable correlation between Web frequencies and plausibility judgments; (c) a reliable correlation between Web frequencies and frequencies recreated using class-based smoothing; (d) a good performance of Web frequencies in a pseudo disambiguation task.